

Controlling life with photons – A new tool based on conjugated polymers

Maria Rosa Antognazza

Center for Nanoscience and Technology @PoliMi The Italian Institute of Technology

it Controlling life with photons: not really a new idea

Arsonval AD. La fibre musculaire est directement excitable par la lumiere. C R Soc Biol. 1891;43:318–320.

5

RECENT ex recognition erty. Moreo cesses as w wave lengt 1958a, 1960

FIG. 8. Responses to light at different intensities in initially autoactive nerve cells. Nerve cell initially autoactive in the dark. Three steady monochromatic (579 mµ) activations, at increasing intensities, successively from top to bottom: 0.15, 0.6 and 1×10^{-6} cal g mm⁻² sec⁻¹.

Duration of the illumination is slightly different in the three records as indicated by the underlying lines. The depolarization and the frequency of the spikes increase with the intensity of illumination. Note a slow adaptation as indicated by a slight lengthening in the period as the illumination proceeds. At the cessation of the light, the frequency of the spikes decrease towards the initial value in the dark. The upper portions of the spikes are not seen.

207

Recording and stimulation: past and present

Past Image taken from Nature, 461, 930 (2009) Present

Measuring

а

Optical stimulation

ooking for alternative techniques

Manipulating

Electrical stimulation of a frog nerve (Galvani, 1791)

Cell optical stimulation: the techniques

 Photochemical reaction through use of endo- or exo-genous fluorophores (Molecular switches; caged neurotransmitters)
Transgenic induction of light-gated ion channels (Optogenetics)
Use of extrinsic absorbers, mainly in the NIR
Infrared Neural Stimulation (water absorption, photo-termal effect)

Our approach:

Use of light-sensitive conjugated polymers to optically excite electrical activity of cells or living tissues

- ✓ Primary neurons
- ✓ Glial cells (astrocytes)
- ✓ Secondary cells (HEK-293)
- Explanted tissues (rat retinas; brain slices)
- ✓ Living animals, e.g. 'implantable artificial retina' (rats)

Same device, different exploitation

iit 1st Study case: primary neuronal networks

- Light pulse:20 ms, 15 mW/mm²
- Neural Stimulation at various stimulus frequencies
- D. Ghezzi, M.R. Antognazza et al., Nature Photonics 2013 D. Ghezzi, M.R. Antognazza et al., Nature Communications 2011

iit 2nd Study case: Astrocytes

- Provide brain with structure
- Active in inflammatory reaction forming glial scar
- Regulate extracellular ionic concentration
- Form the <u>blood-brain barrier</u>
- Provide <u>nourishment</u> to nerve cells
- Actively modulate neuronal signalling
- Involved in many neurodegenrative diseases

2nd Study case: Astrocytes

Benfenati, Antognazza et al., Adv. Healthc. Mater. 2013

9

N. Martino et al., Sci. Rep. 2015

Inhibiting activity: Reduction of evoked spiking in primary neurons

P. Feyen et al., under review 11

Modulation of spontaneous activity in primary neurons

Inhibition of activity in epileptic brain slices

13

Possible application as an artificial photoreceptor?

Retinal diseases

Retinitis Pigmentosa (RP; prevalence 1:3400)

Macular Degeneration (MD, (~30 million people affected)

- Stargardt's disease (juvenile MD)
- -age-related MD (AMD)
- dry age-related MD (dAMD; RPE degeneration)

The optogenetic approach:

Rifunctionalization of photoreceptors which have lost light sensitivity Busskamp et al., Science 329, 413-417 (2010)

Disease Category	Mapped Loci (not Identified)	Mapped and Identified Genes
Bardet-Biedl syndrome, autosomal recessive	none	ARL6, BBS1, BBS2, BBS4, BBS5, BBS7, BBS10, BBS12, MKKS, PTHB1, TRIM32, TTC8
Chorioretinal atrophy or degeneration, autosomal	MCDR1	RGR, TEAD1
Cone or cone-rod dystrophy, autosomal dominant	CORD4, RCD1	AIPL1, CRX, GUCA1A, GUCY2D, PITPNM3, RIMS1, SEMA4A, UNC119
Cone or cone-rod dystrophy, autosomal recessive	CORD8, CORD9	ABCA4, CACNA2D4, CNGB3, KCNV2, RDH5
Cone or cone-rod dystrophy, X-linked	COD2, COD4	RPGR
Congenital stationary night blindness, autosomal dominant	none	GNAT1, PDE6B, RHO
Congenital stationary night blindness, autosomal recessive	none	CABP4, GRK1, GRM6, RDH5, SAG
Congenital stationary night blindness, X-linked	none	CACNA1F, NYX
Deafness alone or syndromic, autosomal dominant	none	WFS1
Deafness alone or syndromic, autosomal recessive	USH2B	CDH23, DFNB31, MYO7A, PCDH15, USH1C
Leber congenital amaurosis, autosomal dominant	none	CRX, IMPDH1
Leber congenital amaurosis, autosomal recessive	LCA3, LCA9	AIPL1, CEP290, CRB1, CRX, GUCY2D, LCA5, LRAT, RD3, RDH12, RPE65, RPGRIP1, TULP1
Macular degeneration, autosomal dominant	BCMAD, BSMD, MCDR1, MCDR2, MCDR3, MCDR4, MCDR5, MDDC, STGD4	ARMD1, C1QTNF5, EFEMP1, ELOVL4, FSCN2, GUCA1B, RDS, TIMP3, VMD2
Macular degeneration, autosomal recessive	none	ABCA4
Macular degeneration, X-linked	none	RPGR
Ocular-retinal developmental disease, autosomal dominant	none	CSPG2
Optic atrophy, autosomal dominant	OPA4, OPA5	OPA1
Optic atrophy, autosomal recessive	ROA1	none
Optic atrophy, X-linked	OPA2	TIMM8A
Retinitis pigmentosa, autosomal dominant	RP33	CA4, CRX, FSCN2, GUCA1B, IMPDH1, NR2E3, NRL, PRPF3, PRPF8, PRPF31, RDS, RHO, ROM1, RP1, RP9, SEMA4A, TOPORS
Retinitis pigmentosa, autosomal recessive	RP22, RP25, RP28, RP29, RP32	ABCA4, CERKL, CNGA1, CNGB1, CRB1, LRAT, MERTK, NR2E3, NRL, PDE6A, PDE6B, PRCD, PROML1, RGR, RHO, RLBP1, RP1, RPE65, SAG, TULP1, USH2A RP2, RPGR
Retinitis pigmentosa, X-linked	RP6, RP23, RP24, RP34	
Syndromic/systemic diseases with retinopathy, autosomal dominant	CORD1, CRV	ABCC6, ATXN7, COL11A1, COL2A1, CSPG2, JAG1, PAX2
Syndromic/systemic diseases with retinopathy, autosomal	AXPC1, CORS2, FHASD, JBTS1, LOC619531, MRST, WFS2	ABCC6, AHI1, ALMS1, CEP290, CLN3, COL9A1, INVS, IQCB1, LRP5, MTP, NPHP1, NPHP3, NPHP4, OPA3, PANK2, PEX1, PEX7, PHYH, PXMP3, RPGRIP1L, TTPA, WFS1 TIMM8A
Syndromic/systemic diseases with retinopathy, X-linked	()	
Usher syndrome, autosomal recessive	USH1E, USH2B	CDH23, DFNB31, MASS1, MYO7A, PCDH15, USH1C, USH1G, USH2A, USH3A
Other retinopathy, autosomal dominant	CACD, CODA1, EVR3, MCDR4, SVD, VRNI	CRB1, FZD4, LRP5, OPN1SW, RB1, VMD2
Other retinopathy, autosomal recessive	ACHM1, RNANC	CDH3, CNGA3, CNGB3, CYP4V2, GNAT2, LRP5, MFRP, NR2E3, OAT, PROML1, R9AP, RBP4, RGS9, RLBP1
Other retinopathy, mitochondrial	none	KSS, LHON, MTATP6, MTTH, MTTL1, MTTS2
Other retinopathy, X-linked	AIED, PRD	CHM, DMD, NDP, OPN1LW, OPN1MW, PGK1, RS1

Looking for alternative techniques...

Artificial retinal prosthesis: state of the art

(A) Camera (B) wireless transmitter (C) extraocular electronic receiver (D) intraocular implant (electrodes array)

Zrenner et al., 2010

DS-electrodes

Major drawbacks: poor resolution, due to the limited number of electrodes; biocompatibility; durability; connection to the existing retinal wiring

Ex-vivo studies

Control retina

Degenerate retina

Photoreceptors Degeneration

Sub-retinal Configuration

- Sprague-Dawley albino rats
- 4-6 weeks photoreceptors damage

Results on rats' explanted retinas

Light pulse: 10 ms, 4 mW/mm²

d

PSTH (counts / bin)

PSTH (counts / bin)

100000

Realization of the prosthetic device: the substrate

After 30days in phys. conditions

HEK cells: 7 – 50 mW/mm² >> thermal effects;

Neurons: ca. 10 mW/mm² >> thermal effects?

Explanted retinas: ca. 1 – 100 μ W/mm² >> ??? In vivo: ca. 0.1 - 10 μ W/mm² >> ???