CHARGE CARRIERS PHOTOGENERATION

Maddalena Binda

Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

Charge carriers photogeneration: what does it mean?

Other ways of generating carriers in organic semiconductors:

-Injection from the electrodes

- -Doping
- -Thermal excitation

Photogeneration: a multistep process

PHYSICAL PHENOMENON

 Light absorption **Reflection and transmission** abs **PHOTOGENERATION** Exciton generation **Excitons recombination** ed Exciton splitting into free charges Charge transport Charges recombination and collection at Energy barriers at the the electrodes electrodes

LOSSES

Efficiency of photocurrent generation: $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

$η = η_{abs} · η_{ed} · η_{cc}$

Light absorption: a strength point of organics

•Reflection losses:

$$R^* = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

* normal incidence

•Transmission losses (or light absorption):

Beer-Lambert law: $I(x) = I_0 e^{-\alpha x}$

We want low (n_1-n_2) ...

$$n_{air}=1$$

 $n_{glass}=1.5$
 $n_{Si}=3.2$
 $n_{o}\sim1.7$

$\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

Exciton generation upon light absorption

Wannier exciton (typical of inorganic semiconductors)

Frenkel exciton (typical of organic materials)

COULOMB MUTUAL INTERACTION

INORGANIC SEMICONDUCTORS:

High mobility (hundreds cm²/Vs) High ϵ (>10)

H. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford, Univ. Press, 1999).

Exciton Radius ~100Å

Exciton Binding Energy (E_B)~10meV

kT(@300K)~25meV

Thermal dissociation of the exciton into free charges

ORGANIC SEMICONDUCTORS:

Low mobility (< 1 cm²/Vs) $\forall \epsilon$ (3÷4)

Exciton Radius ~10Å Exciton Binding Energy (E_B)~0.1÷1eV

kT(@300K)~25meV

Thermal dissociation of the exciton into free charges

Exciton generation upon light absorption

$\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

Exciton generation upon light absorption

Wannier exciton (typical of inorganic semiconductors)

Frenkel exciton (typical of organic materials)

COULOMB MUTUAL INTERACTION

INORGANIC SEMICONDUCTORS:

High mobility (hundreds cm²/Vs) High ϵ (>10)

H. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford, Univ. Press, 1999).

Exciton Radius ~100Å

Exciton Binding Energy (E_B)~10meV

kT(@300K)~25meV

Thermal dissociation of the exciton into free charges

ORGANIC SEMICONDUCTORS:

Low mobility (< 1 cm²/Vs) $\forall \epsilon$ (3÷4)

Exciton Radius ~10Å Exciton Binding Energy (E_B)~0.1÷1eV

kT(@300K)~25meV

Thermal dissociation of the exciton into free charges

Exciton generation upon light absorption

Molecular picture E ↑ Only EXTRINSIC photogeneration! Sr CS (=charge separated state) S Fluorescence optical gap ~ns) electrical gap SO

NOTE that: optical gap \neq electrical gap

A. Kohler, H. Bassler – Electronic processes in organic semiconductors, Wiley-VCH 2015, Germany. ePFD ISBN: 978-3-527-68514-1

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

On the excess energy...

DONOR/ACCEPTOR COPOLYMERS (PCDTBT, PCPDTBT....)

Primary excitation already has strong CT character

Adv. Funct. Mater. 2015, 25, 1287–1295

Nature Materials, 2013, 12, 29-33

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

$\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$ How to obtain free charges from a strongly bound exciton?

- J. Appl. Phys. 106, 104507, 2009.
- L. Onsager, J. Chem. Phys. 2 (1934) 599 C. L. Braun, J. Chem. Phys. 80, 4157, (1984). Onsager-Braun model, refined by Wojcik and Tachiya (M. Wojcik and M. Tachiya, J. Chem. Phys. 130, 104107 (2009))

Photoinduced charge transfer: donor/acceptor interfaces

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

 ΔE is a driving force to charge separation

Photoinduced charge transfer: donor/acceptor interface

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

Photoinduced charge transfer: donor/acceptor interface

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

Photoinduced charge transfer: donor/acceptor interface

On the excess energy...

Only If excess energy (LUMOD/LUMOA offset, high energy photon) gives access to a higher ELECTRONIC CT level, it can be exploited for dissociation.

«Excess VIBRATIONAL energy has virtually no effect»

«It is the spatial extention of the wavefunction of the excited state that determines the yield of dissociation»

• Kohler - Adv. Funct. Mater. 2015, 25, 1287–1295

See also: Nature Materials, 2013, 12, 29-33

Exciton deactivation

- Radiative/non-radiative decay to the ground state (mediated by chemical defects, dopants, surface states)
- Singlet to triplet (ISC)
- Singlet/singlet annihilation

 Recombination with free charges (Auger recombination)

- Quenching at the metal/organic interface

Exciton diffusion

Macromol. Rapid Commun. 2009, 30, 1203–1231

Exciton diffusion

Macromol. Rapid Commun. 2009, 30, 1203–1231

Exciton diffusion

Donor/acceptor heterojunction: morphology

BULK-HETEROJUNCTION

Randomly mixed donor/acceptor molecules

Maximized extension of donor/acceptor interface

Morphology of D/A heterojunction

Comb structure

Donor/acceptor materials: examples

H. Hoppe and N. Serdar Sariciftci, J. Mater. Res., Vol. 19, No. 7, Jul 2004

WITH EXCITONS

To the electrodes...

Charge Transport

Recombination:

WITH OTHER CHARGE CARRIERS

Between FREE hole and electron:

"trapped" electron(hole):

Trap assisted

Via tail

Between FREE hole and electron:

LANGEVIN

$$R = \gamma(np - n_i^2) \qquad \qquad \gamma = \frac{q(\mu_n + \mu_p)}{\varepsilon}$$

$$R_{BHJ} = \gamma \cdot \beta \cdot (n^{A} p^{D} - n^{A}_{i} \cdot p^{D}_{i}) \qquad \left[\begin{array}{c} \gamma = \frac{q(\mu^{A}_{n} + \mu^{D}_{p})}{\overline{\varepsilon}} \\ \beta = 10^{-4} \div 10^{-1} \end{array} \right]$$

 $\eta = \eta_{abs} \eta_{ed} \eta_{cc}$

J. Phys. Chem. C, 2015 DOI: 10.1021/acs.jpcc.5b08936; Phys. Review B 2010, 81, 205307

Between FREE hole(electron) and "trapped" electron(hole):

• Trap assisted (single trap)

$$R_{SHR} = \frac{C_n C_p N_t (np - n_i^2)}{C_n (n + n_1) + C_p (p + p_1)}$$

Shockley-Read-Hall (SRH)

Cn,Cp=capture coeff Nt=traps density $n_1 \propto \exp((Et - Ec)/kT)$ $p_1 \propto \exp((Ev - Et)/kT)$ $p_1 \cdot n_1 = n_i^2$

 $\eta = \eta_{abs} \eta_{ed} \eta_{cc}$

Via «tail» (distribution of traps)

$$R = \int_{HOMO}^{LUMO} N(E) R_{SRH}(E) dE$$

RsRH=recombination rate per energy state at a specific energy

Phys. Rev. Lett. 2011, 107, 256805

Reverse diffusive at the contacts: free carriers diffuse against the electric field and recombine at the metal contacts

Strong electric field case (i.e., low cell
voltage): $J_{diff} < J_{drift}$ Weak electric field case
voltage): $J_{diff} > J_{drift}$

Energy Environ. Sci., 2011, 4, 4410-4422

Investigating recombination losses

- A. Geminate (CT recombination before splitting into free charges)
- B. Langevin (o CT mediated)
- C. Assisted by localized states (traps, tail states)
- D. Reverse diffusive at the contacts

PHYSICAL REVIEW B 84, 075208 (2011)

"Trap-dominated recombination should not be a surprise, because more carriers are trapped in localized states than are in the transport band under solar cell operating conditions" – R.A. Street

 $\eta = \eta_{abs} \cdot \eta_{ed} \cdot \eta_{cc}$

Collection at the electrodes

Non-blocking contacts are required

GENERAL REQUIREMENT:

It's all about choosing suitable metals...

but...

- the choice of the metal contacts is driven by other requirements: leakage current, built-in electric field, availability and cost, stability,...
- Ife at metal/semiconductor interface is far more complicated...

 $\eta = \eta_{abs} \eta_{ed} \eta_{cc}$

Overall photogeneration efficiency?

EXTERNAL QUANTUM EFFICIENCY:

 $\mathsf{EQE} = \frac{\mathsf{Number of collected charges/s}}{\mathsf{Number of incoming photons/s}} = \frac{\mathsf{n_c/s}}{\mathsf{n_v/s}} = \eta_{\mathsf{abs}} \cdot \eta_{\mathsf{ed}} \cdot \eta_{\mathsf{cc}}$

RESPONSIVITY:

$$R = \frac{I}{P_{ott}} = \frac{\lambda q}{hc} \cdot EQE = \frac{\lambda [nm]}{1240} \cdot EQE$$