

Organic electronics for wearable applications

Annalisa Bonfiglio

Department of Electrical and Electronic Engineering University of Cagliari, Italy

<u>annalisa@diee.unica.it</u>

Advanced Course on "ORGANIC ELECTRONICS : principles, devices and applications" Milan, November 27th, 2015

Outline

- ✓ Introduction to Bioelectronics & Wearable Electronics
- $\checkmark\,$ Main constraints of the application
- $\checkmark\,$ Introducing a novel sensing device: the OCMFET
 - ✓ Pressure sensors: piezoelectric vs. capacitive effect
 - ✓Temperature sensors
- ✓ From plastic to fabric: a novel substrates for conformable sensors

Bioelectronics & Wearable Electronics

3

Bioelectronics: employing electronic **devices** for monitoring biological systems

What about Wearable Electronics?

Which materials for Wearable Electronics?

- Very low cost materials and technologies suitable for Large Areas Applications
- Semiconductors, Insulators, Conductors
- Possibility to realize circuits and sensors
- Flexibility → possibility of application to any kind of flexible surfaces (paper, fabric and 3D structures) or directly onto the skin
- Flexibility \rightarrow unaffected by mechanical stimuli!
- Wearability → moderate operational voltages (if in contact with the skin)
- Wearability → interface with readout (Wearable systems must include data processing and/or transmission via BluetoothTM or Wi-FiTM)

What about Organic Materials?

Flexibility;

- ✓ Transparency;
- ✓ Large area production at low costs;
- ✓ Wide range of employable materials.
- ✓ Biocompatibility;

Organic transistors as good device candidates for Wearable Electronics

- ✓ Different geometries are possible
- \checkmark Different, low cost, fabrication methods
- \checkmark They may be employed as sensors

Main constraints of the application

Stefano Lai, University of Cagliari Annalisa Bonfiglio, University of Cagliari

and of substrate ($\chi = Y_1/Y_s$) and R is the bending radius

Effect of strain on OTFTs: Pentacene vs P3ET

Pentacene

Well ordered even when deposited on "non ideal" plastic substrates

P. Cosseddu et al. IEEE Fatter Boinfigttor, University of Cagliari

Inducing morphological changes

Pentacene based devices

As sensitivity to strain seems o be related to morphology, we have **intentionally modified the morphology** by changing the deposition rate

Time (s)

Applications: Artificial robot skin

Develop a highly flexible, compliant system for tactile transduction

Inkjet printed matrices and arrays of OTFTs on plastic substrates

Skin-based Technologies and Capabilities for Safe, Autonomous and Interactive Robots

Mechanical properties and thickness of the elastomer influence the sensitivity (Ecoflex $\rightarrow 1 + 1$ mm)

- Pressure exerted by a mechanical finger
- Hemispheric indenter (4 mm radius)
- Controlled input: Dz, F
- Output: $\Delta I/I$
- Increasing pressures
- Different configurations

Towards realistic applications: other challenges of OTFT-based sensors

- ✓ <u>Operating voltages</u> of organic transistors are <u>typically high</u> (tens of volts):
 - ✓ Reduced portability;
 - ✓ Reduced integration;
 - \checkmark A problem for biological applications!
- ✓ <u>Operating frequencies</u> of organic transistor are <u>typically low</u> (hundred of hertz):
 - $\checkmark\,$ Slow response at mechanical stimuli;
 - \checkmark Insensitivity to fast biochemical events (e.g., cell activity);
- ✓ The <u>semiconductor stability</u> is <u>heavily affected by the</u> <u>environment</u>:
 - ✓ Damages from mechanical stimuli;
 - $\checkmark\,$ Damages from liquids \rightarrow strong limitation for biological applications

Towards high-performances OTFTs: decreasing the bias voltage

$$I_{DS} = \mu C_{INS} \frac{W}{L} f(V_{GS}, V_{DS})$$

Towards high-performances OTFTs

Ultra-low voltage OFETs

Sensors for physical parameters

With respect to PVDF:

- Slower response
- + Temperature
 - independent
- + Low noise

Lai et al. , IEEE Electron Device Letters, 34(6), 801-803, 2013

Playing with textiles

FROM WEARABLE ELECTRONICS TO SMART TEXTILES

CONDUCTIVE FIBRES

Università di Cagliani, Università di Bologna, Cognell University

Textile Tactile Sensor: an array of all-textile pressure sensors

- An all-textile sensor for measuring the pressure distribution between two contacting surfaces.
- The force sensing elements consist in a conductive-polymer treated fabric sandwiched between to two pads of highly conductive yarn sewed on a non conductive fabric.

Sensor response to a pressure

- Tactile sensors with square sensing elements of 1cm spaced 3cm were used for the experiments
- Data is shown for sensors with thin sensing layer (cotton fabric).

Tactile sensor calibration curve

- Measurements were done after 1 and 10 seconds after the onset of the applied pressure.
- The behavior is almost linear up to 10N/cm² of pressure.
- Current increase more than 10 times every 1 N/cm² of pressure along the first 10N/ cm²
- Curves are constructed with the mean value and the standard deviation measured for 4 different sensing elements

Textile tactile sensor prototype

- The resistance of the sensing elements behave almost inversely proportional to the pressure applied.
- The sensor can be interconnected to multiplexing electronics for reading the output of each sensing element and communicate the readings to a computer.
- A software can then be used to visualize the magnitude and spatial distribution of the forces applied on the tactile sensor.
- Link for video

Annalisa Bonfiglio, Ul

The future: more than wearable

SUBMICROMETER FREE-STANDING OTFTs

ULTRA- CONFORMABLE OTFTs

Annalisa Bonfiglio,

Conclusions

- ✓ Organic semiconductors are attracting materials for wearable applications
- ✓ Organic devices may be easily embedded in a garment
- ✓ Organic conductors and semiconductors may also be used for treating textiles at the fibre level → textile sensors and electrodes
- \checkmark The future: from we arable to skin electronics

