

High frequency printed polymer transistors

Mario Caironi

Center for Nano Science and Technology@PoliMi Istituto Italiano di Tecnologia, Milan, Italy

"ORGANIC ELECTRONICS - Principles, devices and applications"

Politecnico di Milano, 26 November 2015

Transconductance vs. f

Transit time

iit a

Cut-off Frequency

$$f_{cut-off} = \frac{1}{2\pi\tau}$$

Frequency

= **g**_mv_{gs}

5

 $\mu = 1 \text{ cm}^2/\text{Vs}$

Measurement of f_{cut-off}

Effect of Capacitances

Frequency of Transition f_{T}

8

M. Caironi et al., Semicond. Sci. Technol. 26 (2011) 034006

Frequency of Transition f_{T}

9

$$f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd})}$$

$$Ideal \text{ (no overlap):} \qquad f_T = \frac{\mu_{app}V_{od}}{2\pi L^2}$$

$$Real \text{ (overlap):} \qquad f_T \approx \frac{\mu_{app}V_{od}}{2\pi L (L+2L_{ov})}$$

$$Caironi et al. Semicond. Sci. Technol. 26 (2011) 034006$$

M. Caironi et al., Semicond. Sci. Technol. 26 (2011) 03400 F. Ante et al., Small 8 (2012) 73

L= 46 μ m, W = 1180 μ m, dielectric thickness = 700 nm, V_g = V_d = 40 V

 $\mu \approx 0.2 \text{ cm}^2/\text{Vs}$ $g_m \approx 1 \,\mu\text{A/V}$ $C_{gs} = 2.3 \,\text{pF} - C_{gd} = 3.8 \,\text{pF}$ $f_T = \frac{g_m}{2\pi(C_{gs} + C_{gd})} \approx 25 \,\text{kHz}$ $f_{cut-off} \approx 60 \,\text{kHz}$

S. Mandal et al., Organic Electronics 20 (2015) 132-141

Challenges towards printed high-speed circuits

K.-J. Baeg, M. Caironi, Y.-Y. Noh, Adv. Mater. 2013, DOI: 10.1002/adma201205361

Organic Semiconductors Mobility

Effect of Pre-aggregation

A. Luzio et al. Scientific Reports 3 (2013) 3425

13

Degree of pre-aggregation in solution

Film formation (spin-coating)

Film formation (spin-coating)

Film formation (spin-coating)

Film formation (spin-coating)

17

Bucella et al., Nature Communications, 6 (2015) 8394

OFETs characterization

Macro-aligned nano-fibrils

Sub-monolayer 2.4 - 2.5 nm Thin film 10 nm

Solvent: mesitylene Coating Speed: 3 min/min

iit CENTER FOR NANO SCIENCE AND TECHNOLOGY Macro-aligned nano-fibrils

ISTITUTO ITALIANO DI TECNOLOGIA

MHz Fast-coated OFETs

 $L = 5 \,\mu\text{m}$

Non optimized architecture for frequency operation!

Bucella et al., Nature Communications, 6 (2015) 8394

22

Printing Techniques Patterning Resolution

Printing Techniques	Viscosity [Pas]	Thickness [µm]	Feature Size [µm]	Throughput [m²/s]	Registration [µm]	Features
Flexography	0.05-0.5	0.04-2.5	80	3-30	<200	Inexpensive plate pattern, high throughput, thick layer / low viscosity ink
Gravure	0.01-0.2	< 0.1–8	75	3-60	>20	Fast printing, high resolution, relatively high plate cost, low dot gain
Offset	5-100	0.5–2	10–50	3–30	>10	High quality, high throughput, need for ink additives
Screen	0.5-50	0.015- 100	20–100	2–3	>25	Robust, simple, thick layer, large feature size, high ink viscosity, slow speed
Inkjet	0.001-0.04	0.01-20	20–50	0.01–0.5	5–20	Non-contact, small ink quantities, digital printing, low viscosity ink, slow speed

Ink-jet printing of narrow linewidths

iit

Self-Aligned Printing (SAP)

24

C.W. Sele et al., Adv. Mat. 17 (2005) 997

iit a

Drying Time of Ink is a Critical Factor

28

-6

-5

Caironi et al., ACS Nano 4 (2010) 1452

L ≈ 200 nm, W ≈ 40 µm

Direct-writing of submicron channels

Effect of Contact Resistance

$$\mu_{app} \approx \mu_0 (1 - (\frac{\mu_0 C_i W R_c V_{od}}{L + \mu_0 C_i W R_c V_{od}})^2)$$

$$f_{T0} \approx \frac{\mu_0 V_{od}}{2 \pi L (L+2 L_{ov})} \leq f_T \approx \frac{\mu_{app} V_{od}}{2 \pi L (L+2 L_{ov})}$$

Rule of Thumb for μ_{app}

Natali, Caironi, Adv. Mater. 24 (2012) 1357

@POLIM

Laser-ablated Semi-transparent electrodes

Doping as a way to control injection and uni-/ambi-polar transport

Effect of Doping

Adv. Funct. Mater. 2014, DOI: 10.1002/adfm.201400850

000000

-

Ð

Filled traps

Hopping

Trapping

LUMO (3.7eV)

HOMO (5.7eV)

E==3.8 eV

----- EFi (4.7 eV)

High Supply Voltage

Forcing the use of gate voltages ≥ 40 V

@POLIM

Low Voltage OFETs with Hybrid Nanodielectrics

36

A. Luzio, et al. Adv. Funct. Mater. 24 (2014) 1790

Printable dielectrics

Issue with downscaling

$$g_m = \frac{di_D}{dv_{GS}}\Big|_{v_{GS} = V_{GS}} = \mu C_{OX} \frac{W}{L} V_{od}$$
 (saturation regime)

$$g_m \propto C'_{OX} V_{od} = const$$

$$C_{OV} = C'_{OX} x_{OV} W \propto C'_{OX}$$

How to reduce Overlap Capacitance: 1. Split Gate

Jun Takeya et al., Adv. Mater. 2014 DOI: 10.1002/adma.201304976

Split gate via lithograpyhy

40

Jun Takeya et al., Adv. Mater. 2014 DOI: 10.1002/adma.201304976

How to reduce Overlap Capacitance: 2. Self-Aligned Gate

41

Y.Y.Noh et al, Nat. Nanotechnol. 2 (2007) 784-789

iit

$f_{\rm T}$ of solution processed OFETs

Y.Y.Noh et al, Nat. Nanotechnol. 2 (2007) 784

OFET *f*_T: record values

SCALABLE PRINTING and DIRECT-WRITING

istituto Italiano di tecnologia center for nano science and technology Perspective?

		f_{τ} [MHz]				
<i>L</i> [µm]	<i>x_{ov}</i> [μm]	1 cm ² /Vs	5 cm ² /Vs	10 cm ² /Vs		
2	2	9.58	47.9	95.8		
1	2	22.8	114	228		
1	1	38.3	192	383		
0.5	1	91.3	457	913		
0.5	0.5	153	767	1533		

Thank you for your kind attention

WILEY-VCH

45

Edited by Mario Caironi and Yong-Young Noh

Large Area and Flexible Electronics

March 2015