

Charge Transport

D. Natali

Milano, 23-27 Novembre 2015

From Order to Disorder

From delocalized to localized states

Madelung, Introduction to Solid-State Theory, Springer

The Two-Site approximation a, V_a b,V_b ψ b ψ a E₁ E_2 (i) Splitting& $|E_1 - E_2|$ delocalization V_a, V_b $\mathbf{2}$ E₁

Mott Electronic processes in non-crystalline materials, Clarendon Press 1979

Mott Electronic processes in non-crystalline materials, Clarendon Press 1979

Density of States

(or an exponential tail, or Gauss+exp or others....) having σ of about 60-100 meV.

LUMO

HOMO

Troisi et al. 10.1021/ja404385y | J. Am. Chem. Soc. 2013, 135, 11247-11256 Atomistic models: the challenge is large size of the system and the nontrivial force fields

Bassler, Phys. Stat. Sol. B 175(1993) 15

Hopping

Charge carriers are localized

Transport occurs by *hopping* between localized states

Hopping

thermally activated tunnelling

Hopping

thermally activated tunnelling

r

Nearest neighbor fixed range hopping

Variable range hopping: an optimum hopping distance

Madelung, Introduction to Solid State Theory, Springer Verlag 1978

Hopping & Gaussian DOS: transport energy(1)

E

A level of most probable excitation EXISTS And does not depend upon the site starting energy (for tail states...)

Schmechel, PHYS.REV. B 66, 235206 ~2002

Hopping & Gaussian DOS: effect of T @ low density

Excitation from \overline{E} to $E_{TR} \propto \exp\left(-\frac{E_{TR} - \overline{E}}{kT}\right) \propto \exp\left(-\frac{2}{3}\frac{\sigma^2}{kT^2}\right)$

Hopping & Gaussian DOS: effect of T @ low density

Excitation from \overline{E} to $E_{TR} = \mu \propto \exp\left(-\frac{E_{TR} - \overline{E}}{kT}\right) \propto \exp\left(-\frac{2}{3}\frac{\sigma^2}{kT^2}\right)$

Hopping & Gaussian DOS: effect of T @ high density

EXCITATION FROM E_F to E_{TR} $\mu \propto \exp\left(-\frac{kT}{kT}\right)$ Coehoorn et al., PHYS. REV. B **72**, 155206 2005

Hopping & Gaussian DOS: effect of T @ high density

 $\mu(T, n, F) = \mu_0 \exp^{-2\alpha a} \exp^{-0.42\widehat{\sigma}} \times g_1(F, T) \times g_2(F, T)$

Density enhancement

At higher density, the E_F to E_{TR} distance diminishes

 $\mu(T, n, F) = \mu_0 \exp^{-2\alpha a} \exp^{-0.42\widehat{\sigma}} \times g_1(F, T) \times g_2(F, T)$

Density enhancement

At higher density, the E_F to E_{TR} distance diminishes

$$\mu(T, n, F) = \mu_0 \exp^{-2\alpha a} \exp^{-0.42\widehat{\sigma}} \times g_1(F, T) \times g_2(F, T)$$

Electric field

energetic barriers

$$\mu(T, n, F) = \mu_0 \exp^{-2\alpha a} \exp^{-0.42\widehat{\sigma}} \times g_1(F, T) \times g_2(F, T)$$

$$\mu(T, n, F) = \mu_0 \exp^{-2\alpha a} \exp^{-0.42\widehat{\sigma}} \times g_1(F, T) \times g_2(F, T)$$

Einstein relation

A disordered s.c. is practically always degenerate!

Tessler Appl. Phys. Lett., Vol. 80, No. 11, 18 March 2002

Einstein relation

Diffusion vs. Mobility enhancement relation

$$D = \frac{kT}{e} \mu \times g_3(T, n)$$
Diffusion enhancement
$$g_3(T, n) = \frac{1}{k_B T} - \frac{p}{\frac{dp(E_F)}{dE_F}},$$
Density enhancement
$$g_1(T,c) = \exp\left[\frac{1}{2}(\hat{\sigma}^2 - \hat{\sigma})(2c)^{\delta}\right]$$

$$\hat{\sigma} = \sigma/(k_B T) \quad c = n/N_t \quad \delta = 2 \frac{\ln(\hat{\sigma}^2 - \hat{\sigma}) - \ln(\ln 4)}{\hat{\sigma}^2}$$

$$\int \frac{dp(E_F)}{dE_F} = \frac{1}{2} \int \frac{dp(E_F)}{dE_F} = \frac{1}{2$$

Hopping and spatial current distribution

Correlated Gaussian Disorder Model(1)

The energetic disorder is *spatially* correlated

The deepest valley are the widest ones

Correlated Gaussian Disorder Model(2)

The electric field lowers the escape barriers

Correlated Gaussian Disorder Model(3)

Correlated Gaussian Disorder Model(4)

Parris, Phys. Stat. Sol. (b) 218, 47 (2000)

Bobbert Organic Electronics 10 (2009) 437–445

Polarons(1)

Relaxation of excess slow carriers...

...due to **on-site e/p** coupling

Polarons(2)

Relaxation of excess slow carriers

Large polaron: Increased effective mass

Small polaron: self-localized in a potential well

Sources:

- intramolecular vibrations
- Intermolecular vibrations
- Electronic polarization

Polarons(3)

Role of the number of π carbon atoms

Burdett, Chemical Bonding in Solids, Oxford University press 1995

Polaron Hopping 1 2

Thermal fluctuations create Coincidence Event

Holstein, Ann.Phys. 8 1959, 325

Disorder and polarons...Parris Phys.Rev.Lett. 87, 2001, 126601

Polaronic effect + Energetic Disorder

Charge density dependence almost supressed in the polaron model

Fischuk PHYSICAL REVIEW B 76, 045210 2007

Polaronic effect + Energetic Disorder

The transport energy lies higher in the polaron model -> The relative change due tue Fermi level lifting is smaller

Fischuk PHYSICAL REVIEW B 76, 045210 2007

Back to Hopping Rate

E' un processo di tunnelling termicamente attivato

Xtal structure and transfer integral: two etylene molecules

Mixed bonding/antibonding interaction

Full (anti)bonding interaction

HOMO splitting larger than LUMO splitting

Bredas, Chem. Rev. 2004, 104, 4971–5003; 2007, 107, 926

 $-\alpha L$

Tetracene dimer: long axis displacement

 $p[\text{HOP}] \propto \exp^{-\frac{\Delta E}{kT}}$

 $exp^{-\alpha L}$

Chang et al. Phys. Status Solidi B 249, No. 9, 1655–1676 (2012)

Pentacene

Equilibrium stacking does not correspond to a max of transfer integral ///

Sirringhaus et AL. Phys. Status Solidi B 249, No. 9, 1655–1676 (2012) / DOI 10.1002/pssb.201248143

Single Crystal & polycrystals: bandlike transport?

Sirringhaus et al. Phys. Status Solidi B 249, No. 9, 1655–1676 (2012) / DOI 10.1002/pssb.201248143

Single Crystal & polycrystals: bandlike transport?

So what?

Single Crystal & polycrystals: bandlike transport?

Large transfer integral fluctuations (*non-local e/p coupling*) -> dynamic disorder -> charge «localizaton» yet, band like temperature dependence, μ∝T⁻ⁿ

Troisi, J. Phys. Chem. A 2006, 110, 4065-4070, Adv. Mater. 2007, 19, 2000–2004

Our understanding so far

Wavefunction **localization** due to the dynamic disorder is **small enough** to give signature of localized states but **large enough** to allow observation of Hall effect

What about high (>1cm²/Vs) mobility polymers?

The (dis)order paradigm for high μ

The (dis)order paradigm for high μ

Doping

•Interstitial: the problem of stability for small dopants (eg metals: Li⁺, K⁺, I₃⁻..)

- •Molecular doping is better
- •The effect of the dielectric constant

(binding energy/dopant density)

Gregg, Chemistry of Materials, 16, 2004, p 4586-4599

Doping: C→N substitution *?!*

The supposed dopant acts as a trap!!!

Vaid, Chem.Mater 2003, 15, 4292

Molecular Doping(1)

Leo et al. Chem. Rev. 2007, 107, 1233-1271

Molecular Doping(2)

Leo et al. Chem. Rev. 2007, 107, 1233–1271

Doping: short-range interactions & doping-induced disorder

N-type doping

N-type doping: the precursor way

Leo et al., Phys. Status Solidi A 210, No. 1, 9–43 (2013)

The End

Almost....The End

Tessler et al. Adv. Mater.2009, 21,2741–2761

Bobbert et al Phys. Status Solidi A209, 2354–2377 (2012)

Baranovskii, Phys. Status Solidi, vol. 251 pp. 487–525, 2014.

Hopping@low T

Hopping revised: on-chain matters...

Density of States

Bassler, Phys. Stat. Sol. B 175(1993) 15

(debate ongoing Vukmirovic J. Phys. Chem. B, 2011, 115 (8), pp 1792–1797

Bredas et alPHYSICAL REVIEW B87, 195209 (2013)