

Principles, devices and applications

Organic TFT II

D. Natali

Milano, 24-27 Novembre 2015

Outline

- Materials (case studies):
 - Polymers (thiophene based and others)
- Single Crystal TFT
- N-type TFT
- Device issues
 - Injection
 - Dielectrics
 - Bias stress
- SAMfet
- Ambipolar TFT
- CMOS strategy

Polythiophenes

n

Regioregularity yields more ordered parallel π -stacked domains

Sirringhaus Synth.Met. 111–112 2000 129–132

P3HT: casting vs spin coating $4^{c_{6}H_{13}}$

Drop casting yields higher mobility: Higher order due to slower growth of the film

Sirringhaus Synth.Met. 111–112 2000 129–132

P3HT: solvent effect

		bp (°C)	mobility (cm²/(V s))	$I_{\rm on}/I_{\rm off}$
	chloroform	60.5 - 61.5	0.012	10^{5}
	thiophene	84		
	xylene	138 - 139	0.042	$10^{3} - 10^{4}$
Bad solvent-	CHB	239 - 240	0.022	10^{6}
	TCB	218-219	0.12	10^{6}

Higher boiling point solvent yields higher mobility retaining high uniformity

Chang Chem. Mater.; 2004; 16(23); 4772-4776

Kline Adv.Mat. 15 2003 1519, Polymer Reviews, v 46, n 1, Jan 1, 2006, p 27-45

P3HT: molecular weight and morphology $\mathcal{A}_{s}^{C_{6}H_{13}}$

Kline Adv.Mat. 15 2003 1519

Sirringhaus PHYSICAL REVIEW B 74, 115318 2006

Sirringhaus PHYSICAL REVIEW B 74, 115318 2006

Sirringhaus PHYSICAL REVIEW B 74, 115318 2006

P3HT: MW and electrical characteristics

 $\mu = k(V_{OV})^{\gamma}$

 $\begin{cases} \mu(E) = \mu_0 & \text{for } E < E_0 \\ \mu(E) = \mu_0 \exp\left(\eta \sqrt{E} - \sqrt{E_0}\right) \end{bmatrix} \text{ for } E > E_0 \end{cases}$

Sampietro et al. J. Appl. Phys., Vol. 104, 084513, 2008

P3HT: MW and processing

P3HT: MW and processing

Veres Chem.Mater. 16(23); 2004 4543-4555

P3HT: MW & surface treatment

Alkane chain interdigitation...

Kim Adv.Funct.Mat. 15 2005 77

P3HT: directional epitaxial solidification

Brinkmann Adv. Funct. Mater. 2007, 17, 101–108

P3HT: directional epitaxial solidification

Salleo Adv. Mater. 2009, 21, 1568–1572

Gargi et al.10.1021/jp4050644| J. Phys. Chem. C2013, 117, 17421-17428

Environmental stability: doping

Condition	$\mu_{\rm fet}^{a}$ (10 ⁻⁴ cm ² /V s)	$\sigma^{\rm b}$ (10 ⁻³ S/cm)
Vacuum Air	1.25	0.58 7.16
N_2	1.23	0.78
O_2 (after 4 h)	0.94	6.00 1.49

TABLE I. μ_{fet} and σ under various operating conditions.

^aCalculated from the $I_d - V_g$ response at $V_d = -30$ V. ^bCalculated from the I_d values at $V_g = -30$ V.

Moisture and Oxygen related doping!!!

Oxygen doping

Liao JOURNAL OF APPLIED PHYSICS 103, 104506 2008

Oxygen doping

Liao JOURNAL OF APPLIED PHYSICS 103, 104506 200

Oxygen doping

C₆H₁₃

TABLE II. The oxygen doping and de-doping rate at different experimental environments.

Environmental stability: storage

Majewski J. Appl. Phys. 102, 074515 2007

Majewski APPLIED PHYSICS LETTERS 88, 222108 2006

Air stability & capping

Need stopping layer to prevent **doping**! - H₂O

_{C6}H₁₃ Air stability & capping **PVP:** TMA stopping iii) ALD deposited \rightarrow Al_2O_3 layer *ii*) Spun \rightarrow i) Spun and cured \rightarrow Spun \rightarrow P3HT Source Drain SiO₂ Gate 1x10⁻³ 1x10⁻² PVP/Al₂O₃ μ [cm²//s] 8x10⁻³ 1x10⁻⁴ 6x10 1x10⁻⁵ 4x10⁻³ X-PVP/PVP/Al₂O₃ 2x10⁻³ 1x10⁻⁶ Ion/Ioff 1×10^{-7} Uncapped 10⁴ 1x10⁻⁸ (vacuum) 1x10⁻⁹ 10^{3} -5 -20 -25 -30 15 50 100 120 0 -10 -15 0 V_{G} [V]

 $|_{\mathsf{D}}[\mathsf{A}]$

Sampietro Organic Electronics 2007 8 407-414 - Organic electronics in press 10.1016/j.orgel.2009.03.003

Time [Days]

New gen. materials

aka the tongue-breaking era

Polyalkylthiophenes: scheme of substitution(1)

3×10⁻²cm²/Vs

Ong Synth.Met. 142 (2004) 49–52

 $10^{-1} \text{cm}^2/\text{Vs}$

Ong J. AM. CHEM. SOC. 2004, 126, 3378-3379

Polyalkylthiophenes: scheme of substitution(2)

Torsional deviation gives lower lying HOMO and hence higher stability

Fused thiophene based polymer

HOMO lowered by competition between Delocalization and resonance without interfering with crystallinity

Table 1 Polymer properties. $71\uparrow$ and $72\uparrow$ correspond to the low- and high-temperature endotherms on heating (at 10 ° C min⁻¹) respectively, and $72\downarrow$ and $71\downarrow$ correspond to the high- and low- temperature exotherms on cooling (10 ° C min⁻¹) respectively. IP was measured by an ambient ultraviolet photoelectron spectroscopy (UPS) technique.

Sidechain	Mn/Mw	λ _{max} (nm)	IP (eV)	71↑ (°C)	<i>T</i> 2↑ (°C)	72↓ (°C)	71↓ (°C)	Cooling e 72↓ (J g ⁻¹)	enthalpy 71↓ (J g ⁻¹)	μ _{max} sat (N ₂) (cm ² V ⁻¹ s ⁻¹)	$\begin{array}{l} \mu_{\rm max\ lin} \\ ({\rm N_2}) \\ ({\rm cm^2\ V^{-1}\ s^{-1}}) \end{array}$	ON/OFF ratio (N ₂)
C10 C12 C14	28,500/51,300 29,600/54,000 33,000/59,600	547	5.1	171 143 141	251 244 248	237 233 233	142 115 102	13.1 10.1 11.3	18.5 20.5 26.5	0.30 0.30 0.63 0.72*	0.22 0.11 0.39 0.20*	10 ⁶ 10 ⁶ >10 ⁷ >10 ^{6*}

* Different device geometry ($W = 2,000 \ \mu m$, $L = 5 \ \mu m$) and dielectric thickness (200 nm).
Fused thiophene based polymer

Fused thiophene based polymer

НО	MO low Deloc	vere	لاً d by atic	ہ ∕ co n a	ڑے mpe nd r	}_* etitic	on be nane	etweer ce	ר ר			5 m
	without		rfor		Wł	าy ร	so	high	???			nn c
Table 1 Poly correspond (UPS) techn	mer properties. 71 to the high- and lo ique.	↑ and 72 w- tempe	!↑ corres rature ex	pond to t otherms	he low- ar on cooling	ia m yn-te j (10 °C m	inperatore in ⁻¹) resp	ectively. IP was	(at 10 by a) ° C min ⁻¹) respecti an ambient ultraviol	vely, and 72‡ and 1 et photoelectron sp	71↓ ectroscopy
Sidechain	Mn/Mw	λ _{max} (nm)	IP (eV)	71↑ (°C)	<i>T</i> 2↑ (°C)	72↓ (°C)	71↓ (°C)	Cooling 72↓ (J g ⁻¹)	i enthalpy <i>T</i> 1↓ (J g ⁻¹⁾	μ max sat (N ₂) (cm ² V ⁻¹ s ⁻¹)	$\begin{array}{l} \mu_{\rm maxlin} \\ ({\rm N_2}) \\ ({\rm cm^2}~{\rm V^{-1}~s^{-1}}) \end{array}$	ON/OFF ratio (N ₂)
C10 C12 C14	28,500/51,300 29,600/54,000 33,000/59,600	547	5.1	171 143 141	251 244 248	237 233 233	142 115 102	13.1 10.1 11.3	18.5 20.5 26.5	0.30 0.30 0.63 0.72*	0.22 0.11 0.39 0.20*	10 ⁶ 10 ⁶ >10 ⁷ >10 ^{6*}
* Different device	e geometry (W = 2,000 μn	n, L = 5 μm)	and dielectri	c thickness (2	200 nm).							

Side chain density role!!

Chabinyc *Macromolecules*, **2007**, 40 (22), 7960-7965

-20

V_{GS}(V)

0

-40

-60

-80

Ó

J. Mater. Chem. C, 2013, 1,3072

Single Crystal FET(1)

deBoer, Physica Status Solidi (A) 201, 2004 p 1302-1331, Bao Mat.Today 10 2007 20

Single Crystal FET(2)

Single Crystal FET(3)

Transport anisotropy

Morpurgo Rev. Mod. Phys 78 2006 973

20

-20

Gate Voltage (V)

0

Bao Nature Communications | 2:437 | Dol:10.1038/ncomms1451

N-type semiconductors

Facchetti J.Am.Chem.Soc. 2004 126(42); 13859-13874

N-type semiconductors

Facchetti J.Am.Chem.Soc. 2004 126(42); 13859-13874

Chlorination:

Bao J. Am. Chem. Soc., **2009**, 131 (10), 3733-3740

N-type: role of dielectrics

De Leuuw Synthetic Metals 87 (1997) 53-59

Air stability:barriers

Channel available spacing 4 Å No Channel 2 Å

a steric barrier to atmospheric penetration created by the densely packed Fluorinated groups

available spacing

Facchetti J. Am. Chem. Soc., 2007, 129 (49), 15259-15278\

Ntype status

TABLE 1. Summary of the Field-Effect Mobilities (μ), Threshold Voltages (V_T), Current I_{on}/I_{off} ratios, Electrochemical Reduction Potentials (E_{red-1}), and OFET Device Structure/Film-Deposition Method for *n*-Channel Semiconductors

DELLAT 1					101
DFH41 -1.	53 0.24 (vacuum)	10 ⁸	20-30	BG-TC (vacum dep.)	27
DFHCO-4T -0.8	88 0.32–0.6 (vacu	um) 10 ⁵	38	BG-TC (vacum dep.)	33
	1.7 (vacuum)	10 ⁹	24	BG-TC (SiO ₂ /PS dielectric, vacum dep.)	34
DHCO-4T -1.0	06 0.12 (e ⁻ , vacuu	n) 10 ⁷	35	BG-TC (vacum dep.)	33
	0.01 (h ⁺ , vacuu	n) 10 ⁷	-54		
	0.67 (e ⁻ , vacuu	n) 10 ⁷	50	BG-TC (SiO ₂ /PS dielectric, vacum dep.)	34
	0.002 (h ⁺ , vacu	um) 10 ³	-60 to -70		
DFHCO-4TCO -0.0	65 0.08 (vacuum)	10 ⁷	9	BG-TC (vacum dep.)	33
	0.005-0.01 (ai	$10^{5} - 10^{6}$	10-20		
FTTTTF -1.	51 0.43 (vacuum)	10 ⁸	30-40	BG-TC (vacum dep.)	34
DFO-PTTP NA	0.03-0.07 (vac	uum) 10 ⁶ —10 ⁷	50-55	BG-TC (vacum dep.)	30
DFCO-4T -1.0	05 0.45 (vacuum)	10 ⁸	30	BG-TC (vacum dep.)	35
	0.21 (vacuum)	10 ⁵	50-70	BG-TC (solution dep.)	
DFCO-TQT -0.4	45 0.02 (air)	$10^{5} - 10^{6}$	25-30	BG-TC (vacum dep.)	35
NDI-8CN2 +0.0	08 0.15 (vacuum)	10 ³	-37	BG-TC (vacum dep.)	40
	0.11 (air)	10 ³	-55	•	
ADI-8CN2 -0.3	33 0.03 (vacuum)	$10^{6} - 10^{7}$	10	BG-TC (vacum dep.)	41
	0.01 (air)	$10^{6} - 10^{7}$	15		
PDI-8CN2 -0.0	06 0.06-0.1 (air)	107	0-10	BG-TC (vacum dep.)	40
	0.01-0.06 (air)	$10^{5} - 10^{7}$	0-10	BG-TC (solution dep.)	
PDI-FCN2 +0.0	04 0.64 (air)	104	-20 to -30	BG-TC (vacum dep.)	40
NDI-T -0.6	65 0.35 (vacuum)	10 ⁶	28	BG-TC (vacum dep.)	47
	0.10 (air)	107	50		
TPDM -0.5	53 0.02 (vacuum)	10 ⁶	20	BG-TC (vacuum dep.)	52
TIFDMT -0.	12 0.16 (air)	$10^{7} - 10^{8}$	0-5	BG-TC (solution dep.)	49
TTIFDMTT -0.2	20 0.001 (e ⁻ , air)	10 ⁵	20	BG-TC (solution dep.)	52
	10 ⁻⁴ (h ⁺ , air)	10 ⁵	-25		
P(BTI) -1.	11 0.01 (vacuum)	10 ⁷	75	BG-TC (solution dep.)	57
P(IFDMT4) -0.2	29 2 × 10 ⁻⁴ (e ⁻ , a	r) 10 ⁴	5 (e)	BG-TC (solution dep.)	52
	$2 imes 10^{-4}$ (h+, a	r) 10 ⁴	—10 (h ⁺)		
P(NDI2ODT2) -0.4	49 0.01-0.08 (air)	$10^{6} - 10^{7}$	-20	BG-TC (solution dep.)	59
	0.45–0.85 (air)	$10^{6} - 10^{8}$	0-5	TG-BC (solution dep.)	60

^aVacuum, measured in a vacuum probe station; air, measured in air. ^bBG-TC, bottom-gate/top-contact; TG-BC, top-gate/bottom-contact; PS, polystyrene.

Facchetti Vol. 44, No. 7 ' 2011 ' 501–510 ' ACCOUNTS OF CHEMICAL RESEARCH

Device issues

- Injection
- Bias stress
- Dielectrics

Contact Resistance

Caironi&Natali, Adv. Mat. 2012 Volume 24, Issue 11, pages 1357–1387

Effect of contact resistances

Only a fraction of applied voltages drop on the actual channel!

- Less current flows!
- Downscaling less effective
- Mobility is apparent and *L*-dependent

Contact resistance & topology

Contact resistance & S/D material

K.-J. Baeg et al. / Thin Solid Films 518 (2010) 4024–4029

 $C_{6}H_{13}$

Transfer line method

Highly susceptible to sample-to-sample variation!!!

Differential method

philosophy: decrease the problem complexity

- Current equation: $I_D = \frac{k V_D (V_G V_{th})^{\gamma + 1}}{1 + k R_{DS} (V_C V_{th})^{\gamma + 1}}$
- Definition: $z = \frac{I_D^2}{dI_D/dV_G} \implies z = \frac{K}{\gamma+1}V_D(V_G V_T)^{\gamma+2}$
- > Z does not depend on R_{DS} !
- Definition: $W = \frac{\frac{V_G}{\int} z dV_G}{z} \approx \frac{\frac{V_G}{\int} z dV_G}{z} = \frac{1}{(\gamma) + 3} (V_G V_{th})$

> Linear in V_G and dependent only on γ and V_{th} !

M. Sampietro et al, J. Appl. Phys., Vol. 101, 2007

Other methods

Puntambekar APPL.PHY.LETT. 83 2003 5539

4-point-probe

۵V_s

Source

Drain

Sense Probe V1

Sense Probe V₂

VD

Contact resistance & downscaling: current status

injection

Organic s.c. Gate insulate Gate Substrate

 L_{MIN} is the channel length experiencing an halving in the current due to contact resistances for a given technology (μ , Rc)

Caironi&Natali, Adv. Mat. 2012 Volume 24, Issue 11, pages 1357–1387

Bias stress

de Leeuw Adv. Mater. 2008, 20, 975–979

Bias stress

10 ⁸	■ P3HT	$\Delta V_{\rm th}(t) = (V_{\rm c}$	$(5-V_{\mathrm{th},0})$	$1 - \exp(1 - e))) + (1 - \exp(1 - e)))))))))))))))))))))))))))))))))))$	$\left[-(t/\tau)\right]$	$(\beta^{\beta}]),$	
ົດ ^{10⁷}			Semiconductor	$\tau_0 [s]$	$\epsilon_{a}[eV]$	$\tau (T = 25 \circ C) [s]$	
τ(РЗНТ	3×10^{-3}	0.6 ± 0.1	4×10^7	
an 10e		(ϵ_{2})	PTAA	8×10^{-4}	0.6 ± 0.1	1×10^7	
u≓		$\tau = \tau_0 \exp\left(\frac{-\tau_a}{\tau_0}\right)$	PTV	2×10^{-6}	0.62	$6 imes 10^4$	
S F		$(k_{\rm B}T)$	3-BuT5	3×10^{-7}	0.6 ± 0.1	3×10^3	
10₂			Pentacene	2×10^{-8}	0.67	4×10^3	
ax	• \		(Single crystal)				
Sel	PTV 🔪		F8T2	3×10^{-5}	0.52	$1.5 imes 10^4$	
10 ⁴	Pentacene F8T2						
	3-ВиТ5		$4H^{+} + O_{2} + 4$	$4e^- \rightleftharpoons 2H_2$	E =	= 0.57 V	
10 ³	4.9 5.0 5.1 5.2 5.3 5.4 5.5	1	$4OS^+ + 4e^- \rightleftharpoons 4OS$ $E = E_{OS}$				
	HOMO Energy (eV)		$2H_2O + 4OS^+ \rightleftharpoons 4OS + O_2 + 4H^+. $ (3)				

$$\tau \propto \frac{[O_2]^{1/2}}{[H_2O]} \exp\left[-\frac{(\epsilon_{\rm HOMO} - 4.97 {\rm eV})}{2k_{\rm B}T}\right] \exp\left(\frac{\epsilon_{\rm d}}{k_{\rm B}T}\right).$$

De Leeuw APPLIED PHYSICS LETTERS 99, 103302 (2011)

Bias stress

De Leeuw APPLIED PHYSICS LETTERS 99, 103302 (2011)

Roughness

Dipole induced DOS broadening

Sirringhaus, THE JOURNAL OF CHEMICAL PHYSICS 128, 234905 2008

Dipole induced DOS broadening

Sirringhaus, THE JOURNAL OF CHEMICAL PHYSICS 128, 234905 2008

Solution: SAM interlayer

functionalization of the Al₂O₃ surface by means of different SAMs

Unconventional dielectrics

J. Am. Chem. Soc.2013, 135, 8926-893

Solution-Deposited Organic-Inorganic Hybrid Multilayer NanoDielectrics

Ambient processible!!!!

20 nm

polarizable, phosphonic acidfunctionalized **organic precursors** combined with ultrathin layers of **high-k inorganic oxide** materials.

5-12 nm thick, leakage 10⁻⁷ A/cm²@2MV/cm, C=750nF/cm²

Facchetti |J. Am. Chem. Soc. 2011, 133, 10239 – 10250

SAM gate: processes

Klauk Langmuir 2008, 24, 1665-1669

Electrochemically gatetd TFT

Switching time *potentially* below μs currently <1ms

Polyanionic electrolite dielectrics

Herlogsson, Adv. Mater. 2007, 19, 97-101

Polyelectroylte dielectrics

Berggren Adv. Mater. 2011, 23, 4684–4689

De Leeuw Nature 455 2008 956

Ambipolar operation

Sirringhaus, Chem. Rev. 2007, 107, 1296, Adv. Mater. 2007, 19, 1791–1799

Ambipolar operation

13H27

P13

Au

electron cur. 50V 10⁻⁶

V_{DS}=50V

40

20

10V

₹

drain current

10-6

- 10'7

10-8

10-9

60

Sirringhaus, Chem. Rev. 2007, 107, 1296, Adv. Mater. 2007, 19, 1791–1799

Ambipolar operation

See for recent review : Loi et al.10.1002/adma.201304280

Light emitting transistor

Recombination occurs at pinch-off, charge concentration is low, Hence low losses due to exciton-polaron quenching EQE=10%!!!

Complementary circuits

Subtractive dep.

Caironi ACS Applied Materials & Interfaces 2011, 3, 3205.

plasma using metal gate as mask

In the end of the day, it's the money

Vin, Vout [V]

Heremans et al IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 1, JANUARY 2012

Vertical transistor

x axis [nm]

z axis [nm]

Zaxis [nm]

X axis [nm]

Vertical transistor

Gate-induced tuning of source inj. barrier

The End

Klauk, Chem.Soc.Rev. 2010, 39, 2643–2666