

ISTITUTO ITALIANO DI TECNOLOGIA CENTER FOR NANO SCIENCE AND TECHNOLOGY

Hybrid Perovskite Solar Cells

Annamaria Petrozza

"ORGANIC ELECTRONICS : principles, devices and applications"

Milan, Novembre 27th, 2015

Perovskite Crystal with ABX₃ stoichiometry

I-V-O3, II-IV-O3 and III-III-O3 e.g KTaO3, SrTiO3 and GdFeO3

I-II-X3, e.g. CsSnI3, CH3NH3PbI3,

It is not only a matter of stoichiometry....

The Goldschmidt tolerance factor:

$$t = \frac{R_A + R_X}{\sqrt{2}(R_B + R_X)}$$

t< 0.7 the perovskite falls apart t >1 towards 2D structures...

iit Playing with Dimensionality

ISTITUTO ITALIANO DI TECNOLOGIA

Dielectric Confinement

 $CH_3NH_3PbI_3$

(C₁₀H₂₁NH₃)₂PbI₄

Organo-Metal Halide Crystalline Perovskite

7

t CH3NH3+ : Orientational disorder and Polarizability

ISTITUTO ITALIANO DI TECNOLOGIA

Modular Structure

Prone to a variety of processing methods

Excitonic Solar Cells

Type II Hetero-Junction

Intrinsic Loss in Excitonic Solar Cells

Hybrid Crystals in DSSC Devices

H. S. Kim et al. Sci Rep. 2: 591 (2012)

Hybrid Crystals in Hybrid Solar Cells

Which is their strength?

Optoelectronic Devices

Nano-structured vs Thin Film

J. Ball, EES, 2013

- Light Absorption
- Charge Generation
- Photo-carriers Transport

Light Absorption

Charge Generation

• Photo-carriers Transport

Light Absorption

In direct band-gap
Phonon assisted

➤um range sun light penetration depth

- thick solar cells
- no light emission

- direct band-gap
- excitonic effects at
 absorption edge
 good light
 penetration depth

Dyes/conjugated polymers

localized states
 excitonic effects
 large absorption
 cross-section/ efficient
 carrier recombination

Light Absorption

 In direct bandgapPhonon assisted
 um range visible light penetration dept
 thick solar cells
 no light emission

Dyes/conjugated polymers

localized states
 excitonic effects
 large absorption
 cross-section/ efficient
 carrier recombination

Phonon of

energy Eph

Photon energy

 $hv = E_{ind} + E_{ph}$

Momentum k

Light Absorption

 In direct bandgapPhonon assisted
 um range visible light penetration dept
 thick solar cells
 no light emission

Photon energy

 $h\nu = E_{ind} - E_{ph}$

Valence band

Conduction band electrons

Indirect band gap

energy Eind

- > direct band-gap
- excitonic effects at absorption edge
 good light penetration depth

Dyes/conjugated polymers

localized states
 excitonic effects
 large absorption
 cross-section/ efficient
 carrier recombination

"..is a quasi-particle that represents a collective excited state of an ensable of atoms or molecules. It is represented by a wavepacket for which we can define mass and speed which transports Energy"

Wannier-Mott

Frenkel

- Solids made by weakly interacting units (e.g organic crystals, inter-molecular coupling weaker than the intra-molecular ones).
- General case of a Molecular Excitation (DSSC)
- The wavefunction squared amplitude is the probability of finding the excited state in the lattice.

G. Lanzani, "The Photophysics behind Photovoltaics and Photonics" Wiley-VCH

Wannier-Mott

- Solids with tightly bounded atoms
- Low Screening → Coulomb attraction does not allow the generation of FREE e-h pairs
- Hydrogenoid system.
- Center of Mass/Exciton radius (LARGER than the lattice constant)

G. Lanzani, "The Photophysics behind Photovoltaics and Photonics" Wiley-VCH

Why do we need to know the details?

• Energy spent in the exciton dissociation

Why do we need to know the details?

 $\alpha_X \propto \frac{1}{\pi (a_B)^3}$

- Energy spent in the exciton dissociation
- Absoprtion cross section enhancement

Why do we need to know the details?

- Energy spent in the exciton dissociation
- Absoprtion cross section enhancement

Exciton Vs Free Charges

at the Thermodynamic Equilibrium

D'Innocenzo et al, Nat Comm. 5, 3586, 2014

Exciton Binding Energy

2

 \hbar^2

 $m_e m_p$

 $m_{o} + m_{\mu}$

Exciton Reduced mass

 E_{B}

 $2\overline{p^2}$ $2\mu a$ **Dielectric constant**

Bohr Radius

The golden rule:

"the Bohr orbital frequency (E_h/h) must be compared with the optical phonon frequency"

Dielectric constant (ɛ):

A measure of a substance's ability to insulate charges from each other.

Screening mechanisms

Electronic Polarizability (Electron Cloud Distortion) 10¹⁵ s⁻¹

Dipole Re Orientation (Langevin Mechanism)

 10^{8} - 10^{10} s⁻¹

Ions Displacement (Optical Phonons)

$$10^{10}$$
- 10^{0} s⁻¹

Screening mechanisms

Dielectric constant of GaAs. Why it is so easy

•
$$\frac{\mathcal{E}_0}{\mathcal{E}_\infty} = 2$$

• ε_0 (T) = 12.4 + 0.00012*T

•
$$\omega_{LO}$$
 = 36meV ω_{TO} = 38meV

Dielectric constants of CH3NH3PbI3, real and imaginary parts

Dielectric constants of CH3NH3PbI3, real and imaginary parts

(I) Direct Measurement of Exciton Binding Energy in CH₃NH₃Pbl₃

Exciton Binding Energy $\Delta \upsilon = k_1 + \upsilon \exp(-\frac{E_b}{k_B T})$

E_b (upper limit)= 50meV

Limitations:

→It is assumed that exciton-phonon interaction induces only exciton dissociation

→ though in a limited range – it assumes the exciton binding energy constant in T

D'Innocenzo et al, Nat Comm. 5, 3586, 2014

(I) Direct Measurement of Exciton Binding Energy in CH₃NH₃Pbl₃

ISTITUTO ITALIANO DI TECNOLOGIA

$$\Delta \nu = \frac{1}{\pi T_2}$$
$$\frac{1}{T_2} = \frac{1}{2T_1} + \gamma$$

$$\frac{1}{T_1} = k_0 + k_T$$
$$k_T = v_T e^{-\frac{E_B}{k_B T}}$$

(II) Direct Measurement of Exciton Binding Energy in CH₃NH₃Pbl₃

Numerical modelling of band-edge absorption by using Elliot's theory of Wannier excitons

$$\alpha(\hbar\omega) \propto \mu_{cv}^{2} \frac{\hbar\omega}{E_{b}} \left[\sum_{j} \frac{4\pi E_{b}}{j^{3}} \cdot Sech \left(\frac{\hbar\omega - E_{g} + \frac{E_{b}}{j^{2}}}{\Gamma} \right) + \int_{E_{g}}^{\infty} Sech \left(\frac{\hbar\omega - \varepsilon}{\Gamma} \right) \cdot \frac{2\pi}{1 - e^{-2\pi \sqrt{E_{b}}/\varepsilon - E_{g}}} \cdot \frac{1}{1 - \frac{8\mu b}{\hbar^{3}} (\varepsilon - E_{g})} d\varepsilon \right]$$

$$E_b = 25 meV$$

<u>Note:</u> This simple formalism does not consider the frequency dependance of the exciton-phonon interaction

(III) Direct Measurement of Exciton Binding Energy in CH₃NH₃Pbl₃ ISTITUTO ITALIANO

58 T

2.1

2.2

50 T

43 T

34 T

2.0

1.9

Energy (eV)

1.3

1.2

1.7

1.8

F(B)/T(0)

$$E(B) = E_g + (N + 1/2)\hbar(\frac{eB}{m^*})$$

At 4K

1.70

Energy (eV)

1.75

(0)1.2 (0)1/(g)1 11

1.1

1.0

1.65

 $m^* = 0.1m$; $E_b = 16meV$ **e** ~ **9**

Miyata et al, Nature Physics 11, 582–587 (2015)

(III) Direct Measurement of Exciton Binding Energy in CH₃NH₃Pbl₃

 $E(B) = E_g + (N + 1/2)\hbar(\frac{eB}{m^*})$

At 161K

Miyata et al, Nature Physics 11, 582–587 (2015)

Grancini G et al, JPC Letters, 5, 3836, 2014

Light Absorption

Charge Generation

• Photo-carriers Transport

Exciton Vs Free Charges

at the Thermodynamic Equilibrium

 $= \frac{n_{FC}}{n}$

Saha-Langmuir equation

Are there excitons around? MAPbl₃

Room Temperature, in the typical PV regime η_{ph} <10¹⁶ cm⁻³: free carriers only

→THz conductivity spectra are Drude-like in accordance with the presence of free charge carriers. Wehrefenning et al, Adv Mater, 26, 1584, 2014, Milot et al, Adv Funct Mater, 2015 DOI: 10.1002/adfm.201502340,

→PL dynamics are dictated by bimolecular recombination processes. Yamada, Y J. Am. Chem. Soc. 2014, 136, 11610. Stranks, Phys. Rev. Appl. 2014, 2 034007.

→ fs-TA spectra show band filling effect and Varnshi –shift. Kamat et al, Nature Photonics, 2014; Grancini&Kandada et al, Nature Photonics 2015

The deal for PV is: we exploit the presence of the exciton transition for light harvesting without paying in charge dissociation

Are there excitons around? MAPbl₃

• Low Temperature, Exciton population is detectable.

→THz spectra probe localization effects as a consequence of exciton formation below 80K. Milot et al, Adv Funct Mater, 2015 DOI:

10.1002/adfm.201502340,

→ fs-TA spectra show a modulation of the photo-bleach as a result of exciton-exciton interaction. Grancini&Kandada et al, Nature Photonics 2015

WARNING: The Exciton binding energy increases (the dielectric constant decreases) when cooling down! → Miyata et al, Nature Physics 11, 582–587 (2015)

Local order/ microstructure

MAPbl₃

D'Innocenzo et al, Nat Comm. 5, 3586, 2014 Grancini&Kandada et al, Nature Photonics 2015

Light Absorption

Charge Generation

Photo-carriers Transport

Photo-carriers Diffusion Length

Electron-Hole Diffusion Lengths

By Photoluminescence Quenching

Silica

Selective Quencher

Natural decay rate (no quencher)

Electron-Hole Diffusion Lengths

By Photoluminescence Quenching

Electron-Hole Diffusion Lengths

By Photoluminescence Quenching

56

Time-resolved Photoluminescence

Stranks et al

Subgap states

Background

(photodoped)

n,

Depopulation (slow)

CE

High fluence, $N >> n_{\tau}$

Ν

Bimolecular

Photoexcited

CB

VB

n.

Depopulation (slow)

→ Yamada, Y J. Am. Chem. Soc. 2014, 136, 11610.

Background

(photodoped)

 \rightarrow Stranks, Phys. Rev. Appl.

Low fluence, $N << n_{T}$

Trapping

2014, 2 034007.

Monomolecular

Photoexcited

(C)

→ Saba, M.; Nat. Commun.

2014, 5 No. 5049.

→D'Innocenzo, J. Am. Chem. Soc. 2014, 136

(51), pp 17730–1773

→ Deschler, J. Phys. Chem. Lett. 2014, 5, 1421.

Deschler, et al

Time-resolved Photoluminescence

D'Innocenzo et al. JACS, 2014, 136 (51), pp 17730-1773

Time-resolved Photoluminescence

10000

 $R_{rad}(E_G) = \int_{E_C}^{\infty} \rho_{ph}(\varepsilon) \alpha(\varepsilon) v_{ph}(\varepsilon) d\varepsilon$ $n_i(E_G) = \int_{E_{CRR}}^{\infty} \rho(\varepsilon) \frac{1}{1 + e^{(\varepsilon - \mu)/k_B T}} d\varepsilon$

Filippetti, et al. J. Phys. Chem, 2014, doi:10.1021/jp507430x

D'Innocenzo et al. JACS, 2014, 136 (51), pp 17730-1773

Measuring Charge-Transport in Perovskites

Terahertz/Microwave Spectroscopy

Simple sample preparation Only informative on short length-scale

C. Wehrenfennig et al., Adv. Mat. (2013)

Space-charge limited current

Relevant to optoelectronic devices Needs highly-selective non-limiting contacts

Time-of-flight

Relevant over longer length-scale Time-scales difficult to measure in thin-film

Q. Dong et al., Science (2015)

Hall-effect

Simultaneously get free-carrier density Like THz, only band mobility obtained

C. Stoumpos et al., Inorg. Chem. (2013)

Take-home Message

The room temperature structure of MAPbX3 is a fluctuating structure where titling and distortion of the octahedral networks and rotations and polarizability of the molecular dipole can strongly affect the optoelectronic properties of the semiconductor.

Open Questions

- Which is the secret of the low recombination rate
- Elucidation of the photo-carriers cooling
- Role of phonons
- Nature of carriers, localization vs delocalization
- Carriers transport mechanism

Vs Structural Properties

Technology

@POLIMI

ISTITUTO ITALIANO DI TECNOLOGIA

Technology

ISTITUTO ITALIANO DI TECNOLOGIA

Technology

Zhang et al, Mater. Horiz., 2015, 2, 315–322

Perovskite PV at IIT

Perovskite PV at IIT

Technology Development

Fotovoltaico leggero e flessibile, a basso costo di produzione e energetico

Aumento efficienza fotovoltaico tradizionale

Further Developments

- Interface Engineering
- Stability
- Toxicity

. .