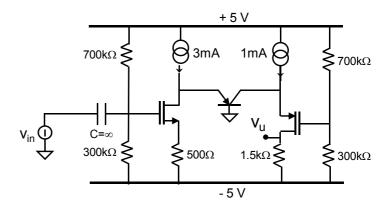

1° prova in itinere

Es. 1

Con riferimento al circuito della figura accanto, in cui il BJT ha β =300 e curve caratteristiche ideali (V_a = ∞) (*Please consider the circuit shown on the right whose BJT has* β =300 and ideal characteristic curves (V_a = ∞):

- a) Scegliere il valore di R affinché $V_{out}=0V$. (Find R in order that $V_{out}=0V$)
- b) Scegliere il valore di C affinché la frequenza del polo del circuito sia a f=100Hz. (Find C in order to obtain a frequency of the pole at f=100Hz)



- c) Scegliere l'ampiezza di v_{in} affinché $HD_2=1\%$. (Find the amplitude of v_{in} in order to obtain $HD_2=1\%$.)
- d) Scegliere la massima ampiezza negativa di v_{in} oltre cui il BJT satura. (Find the maximum value for the negative amplitude of v_{in} before BJT saturation)
- e) Trovare il valore di C_{bc} che giustifica un polo alla frequenza di 2.5MHz. (Find the value of C_{bc} that justify a pole at a frequency of f=2.5MHz).

Es. 2

Con riferimento al circuito della figura accanto, il cui BJT ha β =100 ed i MO-SFETs hanno |k|=2mA/ V^2 e $|V_T|$ =1V (Please refer to the circuit on the right side, whose BJT has β =100 and MO-SFETs have |k|=2mA/ V^2 and $|V_T|$ =1V):

a) Calcolare la corrente di polarizzazione circolante nel transistore bipolare indicandone il verso. (*Find the DC value of the current in the BJT*)

- b) Calcolare il guadagno a media frequenza per piccoli segnali $G=V_u/V_{in}$. (Calculate the small signal gain $G=V_u/V_{in}$ of the circuit at central bandwith).
- c) Considerare solo le capacità C_{gd} =5pF dei due MOSFET e la capacità C_{bc} =3pF del BJT. Verificare che le tre capacità non interagiscono tra di loro e calcolare le frequenze dei tre poli che vengono introtti nella funzione di trasferimento. (*Now consider the following 3 capacitances:* C_{gd} =5pF of the two MOSFETs and C_{bc} =3pF of the BJT. Verify that these 3 capacitances are not interacting and calculate the frequences of the corresponding poles).
- d) Partendo dalle informazioni del punto precedente, disegnare il diagramma di Bode quotato del modulo e della fase della funzione di trasferimento tra ingresso ed uscita. (Starting from the results obtained above, draw the Bode plots modulus and phase- of the transfer function $V_u(s)/V_{in}(s)$.