Elettronica Analogica – Prof. Marco Sampietro 9-16 Novembre 2023 - Anno accademico 2023/2024

DISTORSIONE e DINAMICA in uno stadio differenziale.

Parte 1: Polarizzazione del circuito

Calcolo teorico: tensione di Early infinita

Studiare la polarizzazione del seguente circuito dimensionando la resistenza R3 affinché i nodi di uscita V_{out1} e V_{out2} siano ad un potenziale di 10V quando gli ingressi sono nulli. Fare i conti nel caso di tensione di Early infinita, $V_a=\infty$

Valori di polarizzazione e calcolo di R3:				
$^{1/2}\mu C_{ox}W/L _{1}=$	$^{1/2}\mu C_{ox}W/L _{2}=$	$^{1/2}\mu C_{ox}W/L _{3}=$	$^{1/2}\mu C_{ox}W/L _{4}=$	
I _{M1} =	g _{m1} =	$1/g_{m1} =$		
I _{M2} =	$g_{m2} =$	$1/g_{m2} =$		
I _{M3} =	$V_S =$	$V_{od} _{M1,M2}=$		
I _{M4} =	$V_{GS,M3} =$	$\mathbf{R}_3 =$		

Guida all'uso del Simulatore Spice

Nel caso non foste venuti al primo laboratorio, scaricate pSPICE da :

ftp://ftp.elet.polimi.it/outgoing/Chiara.Guazzoni/lezioni/laboratorio1/91pspstu.exe

Installatelo sul vostro PC.

Caricare in Spice lo schematico e le altre librerie di interesse scaricabili da

https://sampietro.faculty.polimi.it/didattica/ElAnscaricabile.html

Andando in "Analysis-Library and Include files" dovete indirizzare correttamente le librerie in base a dove le avete messe nel vostro PC. Per fare ciò : Delete (di tutti gli indirizzi per caso presenti), Browse (per accedere alla vostra cartella), Identificare il file .lib e caricarlo con Add library (il 4° della lista).

E' utile sapere che:

Nella libreria *breakout.slb* sono presenti dei dispositivi ideali (*MbreakP*= MOSFET p-channel, *MbreakN*= MOSFET n-channel, *Rbreak*=resistenza, *Cbreak*=capacità) mentre nella libreria *source.slb* sono presenti i generatori di tensione (VDC, VSIN...). Cliccare sui generatori di segnale e accertarsi che *Voff* = 0, *Vampl* = 0, *Freq* = 0, *Phase* = 0.

Per inserire il modello del transistore bisogna selezionarlo con il mouse e dal menu *Edit* scegliere *Model* e, successivamente, *Edit Instance Model (Text)*. Aggiornare quindi la finestra che definisce il modello del nMOSFET nel modo seguente:

.model Mbreakn NMOS(
VTO = 0.75	
KP = 120e-6	
LAMBDA = 0)	
*\$	

VTO= tensione di soglia, KP= μ C_{ox}, LAMBDA= inverso della tensione di Early.

In zona satura il simulatore utilizza la seguente espressione della corrente di drain :

$$I_{D} = \frac{1}{2} K P \frac{W}{L} (V_{GS} - V_{TO})^{2} (1 + V_{SD} / V_{A})$$
 (Eq.1)

Per inserire i parametri geometrici del transistore fare un doppio click con il mouse sul componente (oppure dal menu *Edit* selezionare *Attributes*) e aggiornare i campi L e W (*Nota*: il simbolo per il micron è la u).

Per far girare la simulazione della sola polarizzazione, dal menu *Analysis* selezionare *Set-up* e successivamente spuntare *Bias Point Detail*, poi *close*. Da *Analysis*, selezionare *Simulate*.

Per vedere il valore della transconduttanza, da Analysis, selezionare Examine output e cercare GM

Parte 2: Comportamento su piccolo segnale DIFFERENZIALE (LAMBDA = 0)

Verificare che i valori delle tensioni ai nodi utilizzando il simulatore SPICE siano uguali ai valori calcolati teoricamente.

Calcolo teorico:

Calcolare carta&penna il guadagno lineare (di piccolo segnale) :

guadagno single-ended, cioè il guadagno verso la singola uscita:

 $G_d = V_{out2} / (V_{in1} \text{-} V_{in2}) =$

guadagno differenziale, cioè il guadagno verso la differenza tra le due uscite:

 $G_{diff} = (V_{out1} \text{-} V_{out2}) / (V_{in1} \text{-} V_{in2}) =$

Simulazione Spice:

Effettuare l'analisi in transitorio e calcolare i due guadagni lineari (di piccolo segnale) applicando un *segnale differenziale* V_{diff}=(V_{in1}-V_{in2}) sinusoidale alla frequenza di 1kHz e **ampio 1mV**

Per effettuare la simulazione:

• si usi il generatore VSIN (per inserirlo nello schematico andare nel menu Draw_Get New Part).

• fare doppio clic sul simbolo e inserire i parametri di ampiezza (*vamp*), offset (*voff* = 0) e frequenza (*freq*). Consiglio: per applicare il segnale differenziale sfasare di 180° un generatore rispetto all'altro agendo sul parametro PHASE di uno dei due ($V_{in1}=0.5mV$, $V_{in2}=0.5mV$ sfasato di 180)

• Dal menu *Analisys Setup* selezionare il box accanto a *Transient* e fare clic sul tasto *Transient*. Nella maschera che appare impostare *Final Time*, che rappresenta l'intervallo temporale oggetto della simulazione, a 5ms e *step ceiling*, che rappresenta il massimo passo temporale di simulazione, a 0.1μ s. nella sezione Fourier Analysis della stessa mascherina impostare le variabili dei punti di uscita di cui si vuole avere lo sviluppo di Fourier.

• Oltre che misurare all'oscilloscopio l'ampiezza della sinusoide in uscita, potete calcolare il guadagno lineare del circuito dal menu *Analysis* nella tabella di "Examine output" guardando l'ampiezza della prima armonica che vi sarete fatti calcolare nella Analisi di Fourier

guadagno single-ended fornito dal simulatore:

 $G = V_{out2}/(V_{in1}-V_{in2}) =$

guadagno differenziale fornito dal simulatore:

 $\mathbf{G} = (\mathbf{V}_{out1} - \mathbf{V}_{out2}) / (\mathbf{V}_{in1} - \mathbf{V}_{in2}) =$

Parte 3 : Distorsione del segnale differenziale in uscita (caso di LAMBDA = 0)

Calcolo teorico:

Con in ingresso una sinusoide a 1kHz e di **ampiezza di picco differenziale pari a 2V**, proviamo a prevedere quanto sarà ampia la forma d'onda in uscita, completando la tabella seguente.

	Colonna per i conti ed il risultato
Valore di picco in V _{out2} se il circuito si comportasse in modo perfettamente lineare:	Ouotare con questo risultato il grafico in basso.
Valore di ε (%) vero (termine cubico/termine lineare) ricavato con i conti a lezione :	$\varepsilon'''(\%) \cong \left(\frac{v_1 - v_2}{2 \cdot V_{OD}}\right)^2 \cdot \frac{1}{2}$
Valore di picco positivo/negativo calcolato carta-e-penna utilizzando quest'ultimo ε.	Disegnare nel grafico in basso la sinusoide che ci aspettiamo quindi in uscita dal circuito, quotata con questo risultato. Riflettete sul fatto che la ɛ appena trovata debba diminuire l'ampiezza della curva ideale disegnata all'inizio.

Disegnare l'andamento aspettato dell'uscita rispetto alla sinusoide ideale riportata qui sotto (quotare le curve sulla base dei valori calcolati sopra) :

Simulazione Spice:

Simulare il valore di picco dell'uscita V_{out2} nel caso di sinusoide in ingresso di ampiezza differenziale $V_{diff} = (V_{in1} - V_{in2})$ di picco pari a 2V ($V_{in1} = 1V$, $V_{in2} = 1V$ sfasato di 180°).

Valore di picco positivo simulato:	
Valore di picco negativo	
simulato:	

Confrontare i risultati simulati con i valori di picco positivo e negativo prima stimati. Dovreste aver trovato che :

- i valori di picco negativo e positivo sono uguali tra loro, cioè la curva in uscita è simmetrica;
- i valori sono molto simili a quelli appena calcolati carta&penna, dimostrando che avete capito bene e che sapete prevedere la realtà con ragionevole precisione.

Guardate ora <u>le singole armoniche</u> presenti *al terminale di uscita* del transistore e disegnatele qui sotto. Per ottenere le armoniche con $V_{diff}=2V$ abilitare la funzione *Fourier Analysis* nella finestra di setup della simulazione *Transient* scegliendo 10 armoniche. Dopo aver rilanciato la simulazione, trovate le ampiezze delle armoniche in *Analysis -> Examine Output* e disegnatele qui sotto.

Notate che, pur impiegando transistori dalla caratteristica perfettamente quadratica:

- sono praticamente assenti le armoniche pari;
- vengono generate anche le armoniche superiori (3^a, 5^a, 7^a etc...).

Riflettere su come ciò sia possibile.

Notate che l'ampiezza della 1° **armonica**
(*ricavata dal simulatore*) è minore di quella
prevista nella pagina precedente per un circuito
perfettamente lineare.
Per capirlo, ricordatevi che quando fate il cubo
producete anche una prima armonica, che in
questo caso va a sottrarsi. L'espressione qui
accanto è corretta, mettetene i valori.

$$\frac{1}{2}(v_1 - v_2) \cdot \sqrt{2k \cdot I_{rif}} - \frac{k\sqrt{2k}(v_1 - v_2)^3}{8\sqrt{I_{rif}}} \cdot \frac{3}{4}$$

Total Harmonic Distortion

Per apprezzare il valore della distorsione dello stadio differenziale, facciamo innanzitutto un calcolo carta-e-penna della distorsione che potremmo avere nel caso peggiore possibile, cioè se il Sorce non si muovesse ($v_s=0V$ su segnale).

Valore di HD ₂ (%) stimato nel caso semplificato in cui $v_S=0$ (E' come se il differenziale fosse fatto da due Source a massa !).	=3	HD ₂ =
--	----	-------------------

Stimiamo ora la distorsione fornitaci dai calcoli teorici e guardiamo cosa ci dice il simulatore, compilando la tabella seguente:

	Da calcoli teorici	Da SPICE : Riportate il valore di THD fornito dal simulatore
THD :	$HD_3 \cong \frac{\varepsilon}{4} = \left(\frac{v_1 - v_2}{2 \cdot V_{OD}}\right)^2 \cdot \frac{1}{2} \cdot \frac{1}{4} =$	

Notate che la distorsione è piccola, molto minore di quella che avremmo se $v_s=0V$. Ciò è molto bello ma perchè ?

Per capire meglio le ragioni di questo comportamento, rilevare lo spostamento della **tensione nel punto V**s (il source dei due MOSFET) nel caso di $V_{diff} = (Vin_1 - Vin_2) = 2V$.

Disegnare l'andamento nel tempo di Vs(t) rispetto al valore di polarizzazione e confrontarlo con la sinusoide $V_{in1}(t)$ già tracciata. Indicare il valore dell'ampiezza di Vs(t).

Commentare il corrispondente andamento di $V_{GS}(t)$ e metterlo in relazione con la linearità complessiva del circuito.

Parte 4: Effetto della resistenza di Early dei MOSFET

Si renda ora il modello dei MOSFET più realistico introducendo l'effetto dello spostamento del punto di pinch-off. A questo scopo si aggiorni il modello di **tutti** i transistori per tenere conto di una tensione di Early di $V_a=50V$:

```
.model Mbreakn NMOS(
VTO = 0.75
KP = 120e-6
LAMBDA=0.02)
*$
```

Il simulatore ora utilizza la seguente espressione della corrente di drain in zona satura:

$$I_{D} = \frac{1}{2} K P \frac{W}{L} (V_{GS} - V_{TO})^{2} (1 + \lambda V_{DS})$$

Stimare teoricamente le modifiche subite dal circuito prodotte dalla presenza del termine LAMBDA e verificare tramite il simulatore la bontà delle stime utilizzate.

Polarizzazione:

Stimare la corrente di drain di M3 (conti a mano). Per fare il calcolo abbastanza velocemente riflettere su quale sia tra M3 e M4 il transistore principalmente responsabile del diverso valore della corrente di polarizzazione rispetto al caso di LAMBDA=0.	Valore di corrente di drain di M3 fornita dal simulatore:

Quale è il nuovo valore di transconduttanza g_{m1} e g_{m2} ? (conti a mano)	Transconduttanza dal simulatore :
	Confrontarlo con quello con LAMBDA=0 :
Stimare il valore di r ₀ di M1=M2.	Dal simulatore :

Guadagno lineare : applicare (v1-v2)=2mV (V_{in1} =1mV, V_{in2} =1mV sfasato di 180°). :

	Sato al 100 J. •
A fronte dei cambiamenti appena introdotti, stimare il guadagno	Valori forniti dal
V _{out2} /(V _{in1} -V _{in2}) per <u>piccoli segnali</u> single-ended:	simulatore:
	$V_{out2}/V_{diff} =$
	$(V_{out1}-V_{out2})/V_{diff} =$
Stima del guadagno differenziale (V _{out1} -V _{out2})/(V _{in1} -V _{in2}):	
Come mai il guadagno è maggiore di quello senza V _A ?	

Distorsione: applicare vdiff=2V all'ingresso	
Ti aspetti che la presenza di r ₀ (sia in M1, M2 che in M3) aumenti o	Risultato da simulazione
diminuisca la distorsione dello stadio ?	(V _{diff} =2V e LAMBDA=0.02)
	THD =
Notare che risorge la 2° armonica. Come mai? Chi ne e responsabile, M1, M2 o M3 ?	LAMBDA=0 :
L'oscillazione della tensione al Source è maggiore o minore di prima senza r_0 ? Perché ?	

Questa parte è molto difficile. Se l'hai capita sei molto bravo e puoi andare fiero del tuo sapere !

Parte 5: Comportamento su grandi segnali di ingresso (LAMBDA=0)

Dinamica massima con segnale di ingresso differenziale

Calcolare la massima tensione differenziale di ingresso tale da <u>sbilanciare completamente</u> la coppia differenziale, cioè fare portare tutta la corrente ad un transistore e zero all'altro. Spazio per i conti

\mathbf{V}_{trad}	
v diff[max	

Caratteristica ingresso-uscita per grandi segnali

Per controllare con il simulatore la dinamica trovata sopra, si tracci la caratteristica ingresso-uscita dello stadio differenziale, ossia si faccia il grafico di V_{out1} (oppure V_{out2}) in funzione dell'ampiezza dell'ingresso. E' utile a questo scopo utilizzare la simulazione "DC sweep" e impostare come variabile di sweep il nome di uno dei generatori di tensione (ad esempio V_{in1}) e farne variare la tensione DC tra -15V e +15V (Start value=-15, End Value=15, Increment=15m). L'altro generatore di ingresso (V_{in2}) verrà tenuto dal simulatore fermo a 0V.

Giustificare l'andamento trovato della curva.

Determinare i regimi di funzionamento dei transistori nei vari punti della curva. Notare che pur entrando in zona Ohmica, il transistore continua a portare tutta la corrente del generatore di coda!