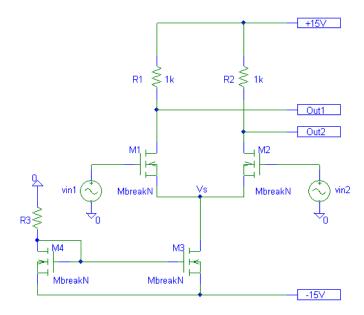
Elettronica Analogica – Prof. Marco Sampietro


13-20 Novembre 2025 - Anno accademico 2025/2026

DISTORSIONE e DINAMICA in uno stadio differenziale.

Parte 1: Polarizzazione del circuito

Calcolo teorico: tensione di Early infinita

Studiare la polarizzazione del seguente circuito dimensionando la resistenza R3 affinché i nodi di uscita V_{out1} e V_{out2} siano ad un potenziale di 10V quando gli ingressi sono nulli. Fare i conti nel caso di tensione di Early infinita, V_a = ∞

$$V_T$$
=0.75 V
 k_n = μC_{ox} =120 $\mu A/V^2$
 $r_0 = \infty$

Dimensioni dei MOS: $\begin{array}{l} W_1/L_1{=}7\mu/0.7\mu, \\ W_2/L_2{=}7\mu/0.7\mu, \\ W_3/L_3{=}140\mu/0.35\mu, \\ W_4/L_4{=}70\mu/0.35\mu. \end{array}$

Valori di polarizzazione e calcolo di R3:

$${}^{1}\!\!{}_{2}\mu C_{ox}W/L|_{1} = \qquad {}^{1}\!\!{}_{2}\mu C_{ox}W/L|_{2} = \qquad {}^{1}\!\!{}_{2}\mu C_{ox}W/L|_{3} = \qquad {}^{1}\!\!{}_{2}\mu C_{ox}W/L|_{4} = \qquad {}^{1}\!\!{}_{2}$$

$$\begin{array}{lll} I_{M1} = & g_{m1} = & 1/g_{m1} = \\ & & & \\ I_{M2} = & g_{m2} = & 1/g_{m2} = \\ & & & \\ I_{M3} = & V_{S} = & V_{od|M1,M2} = \\ & & & \\ I_{M4} = & V_{GS,M3} = & R_3 = \end{array}$$

Guida all'uso del Simulatore Spice

Nel caso non foste venuti al primo laboratorio, scaricate pSPICE da:

ftp://ftp.elet.polimi.it/outgoing/Chiara.Guazzoni/lezioni/laboratorio1/91pspstu.exe

Installatelo sul vostro PC.

Caricare in Spice lo schematico e le altre librerie di interesse scaricabili da

https://sampietro.faculty.polimi.it/didattica/ElAnscaricabile.html

Andando in "Analysis-Library and Include files" dovete indirizzare correttamente le librerie in base a dove le avete messe nel vostro PC. Per fare ciò : Delete (di tutti gli indirizzi per caso presenti), Browse (per accedere alla vostra cartella), Identificare il file .lib e caricarlo con Add library (il 4° della lista).

E' utile sapere che:

Nella libreria *breakout.slb* sono presenti dei dispositivi ideali (*MbreakP*= MOSFET p-channel, *MbreakN*= MOSFET n-channel, *Rbreak*=resistenza, *Cbreak*=capacità) mentre nella libreria *source.slb* sono presenti i generatori di tensione (VDC, VSIN...). Cliccare sui generatori di segnale e accertarsi che *Voff* = 0, *Vampl* = 0, *Freq* = 0, *Phase* = 0.

Per inserire il modello del transistore bisogna selezionarlo con il mouse e dal menu *Edit* scegliere *Model* e, successivamente, *Edit Instance Model (Text)*. Aggiornare quindi la finestra che definisce il modello del nMOSFET nel modo seguente:

VTO= tensione di soglia, KP=μC_{ox}, LAMBDA= inverso della tensione di Early.

In zona satura il simulatore utilizza la seguente espressione della corrente di drain :

$$I_D = \frac{1}{2} KP \frac{W}{L} (V_{GS} - V_{TO})^2 (1 + V_{SD} / V_A)$$
 (Eq.1)

Per inserire i parametri geometrici del transistore fare un doppio click con il mouse sul componente (oppure dal menu *Edit* selezionare *Attributes*) e aggiornare i campi L e W (*Nota*: il simbolo per il micron è la u).

Per far girare la simulazione della sola polarizzazione, dal menu *Analysis* selezionare *Set-up* e successivamente spuntare *Bias Point Detail*, poi *close*. Da *Analysis*, selezionare *Simulate*.

Per vedere il valore della transconduttanza, da Analysis, selezionare Examine output e cercare GM

Parte 2: Comportamento su piccolo segnale DIFFERENZIALE (LAMBDA = 0)

Verificare che i valori delle tensioni ai nodi utilizzando il simulatore SPICE siano uguali ai valori calcolati teoricamente.

Calcolo teorico:

Calcolare carta&penna il guadagno lineare (di piccolo segnale) :

guadagno single-ended, cioè il guadagno verso la singola uscita:

$$G_d = V_{out2}/(V_{in1}-V_{in2}) =$$

guadagno differenziale, cioè il guadagno verso la differenza tra le due uscite:

$$G_{diff} = (V_{out1}-V_{out2})/(V_{in1}-V_{in2}) =$$

Simulazione Spice:

Effettuare l'analisi in transitorio e calcolare i due guadagni lineari (di piccolo segnale) applicando un segnale differenziale $V_{diff} = (V_{in1} - V_{in2})$ sinusoidale alla frequenza di 1kHz e **ampio 1mV**

Per effettuare la simulazione:

- si usi il generatore VSIN (per inserirlo nello schematico andare nel menu *Draw Get New Part*).
- fare doppio clic sul simbolo e inserire i parametri di ampiezza (vamp), offset (voff = 0) e frequenza (freq). Consiglio: per applicare il segnale differenziale sfasare di 180° un generatore rispetto all'altro agendo sul parametro PHASE di uno dei due ($V_{in1}=0.5 \text{mV}$, $V_{in2}=0.5 \text{mV}$ sfasato di 180)
- Dal menu *Analisys Setup* selezionare il box accanto a *Transient* e fare clic sul tasto *Transient*. Nella maschera che appare impostare *Final Time*, che rappresenta l'intervallo temporale oggetto della simulazione, a 5ms e *step ceiling*, che rappresenta il massimo passo temporale di simulazione, a 0.1µs. nella sezione Fourier Analysis della stessa mascherina impostare le variabili dei punti di uscita di cui si vuole avere lo sviluppo di Fourier.
- Oltre che misurare all'oscilloscopio l'ampiezza della sinusoide in uscita, potete calcolare il guadagno lineare del circuito dal menu *Analysis* nella tabella di "Examine output" guardando l'ampiezza della prima armonica che vi sarete fatti calcolare nella Analisi di Fourier

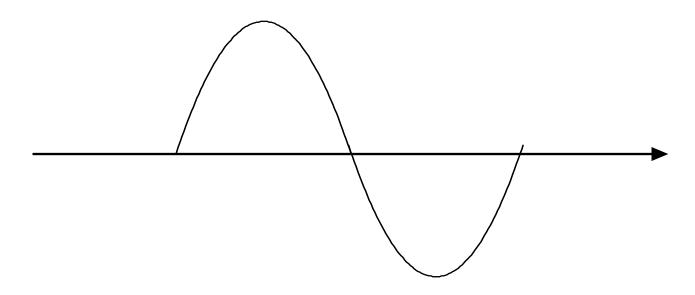
guadagno single-ended fornito dal simulatore:

$$G = V_{out2}/(V_{in1}-V_{in2}) =$$

guadagno differenziale fornito dal simulatore:

$$G = (V_{out1}-V_{out2})/(V_{in1}-V_{in2}) =$$

Parte 3: Distorsione del segnale in uscita (caso di LAMBDA = 0)


SINGOLA USCITA (Vout2)

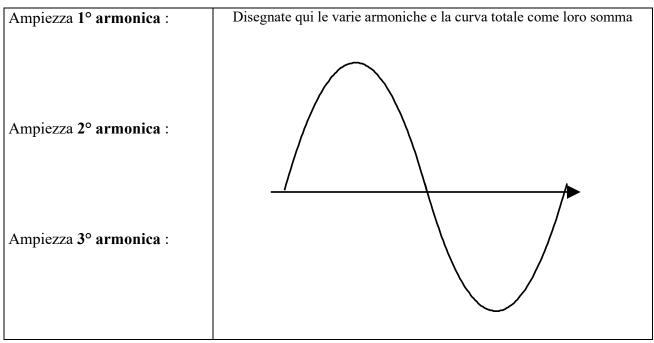
Calcolo teorico:

Con in ingresso una sinusoide a 1kHz e di **ampiezza di picco differenziale pari a 2V**, proviamo a prevedere quanto sarà ampia la forma d'onda in uscita, completando la tabella seguente.

	Colonna per i conti ed il risultato
Valore di picco in V _{out2} se il circuito si comportasse in modo perfettamente lineare:	
	Quotare con questo risultato il grafico in basso.
Valore di ε (%) (termine cubico/termine lineare) ricavato con i conti a lezione (Cap.7 del libro) e riportato qui di fianco:	$\varepsilon'''(\%) \cong \left(\frac{v_1 - v_2}{2 \cdot V_{OD}}\right)^2 \cdot \frac{1}{2}$
Valore di picco positivo/negativo calcolato carta-e-penna utilizzando quest'ultimo ε.	Disegnare nel grafico in basso la sinusoide che ci aspettiamo quindi in uscita dal circuito, quotata con questo risultato. Riflettete sul fatto che la ε appena trovata debba diminuire l'ampiezza della curva ideale.

Disegnare l'andamento aspettato dell'<u>uscita Vout2</u> rispetto alla sinusoide ideale riportata qui sotto (quotare le curve sulla base dei valori calcolati sopra) :

Simulazione Spice:


Simulare il valore di picco dell'uscita V_{out2} nel caso di sinusoide in ingresso di ampiezza differenziale $V_{diff}=(V_{in1}-V_{in2})$ di picco pari a 2V $(V_{in1}=1V,V_{in2}=1V sfasato di 180^\circ)$.

Valore di picco positivo simulato:	
Valore di picco negativo simulato:	

Confrontare i risultati simulati con i valori di picco positivo e negativo prima stimati. Dovreste aver trovato che:

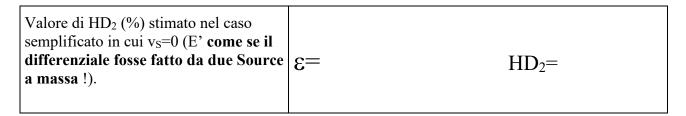
- i valori di picco negativo e positivo sono uguali tra loro, cioè la curva in uscita è simmetrica;
- i valori sono molto simili a quelli appena calcolati carta&penna, dimostrando che avete capito bene e che sapete prevedere la realtà con ragionevole precisione.

Guardate ora <u>le singole</u> <u>armoniche</u> presenti *al terminale di uscita* Vout2 del transistore e disegnatele qui sotto. Per ottenere le armoniche con V_{diff}=2V abilitare la funzione *Fourier Analysis* nella finestra di setup della simulazione *Transient* scegliendo 10 armoniche. Dopo aver rilanciato la simulazione, trovate le ampiezze delle armoniche in *Analysis->Examine Output* e disegnatele sotto.

Notate che, pur impiegando transistori dalla caratteristica perfettamente quadratica:

- sono praticamente assenti le armoniche pari;
- vengono generate anche le armoniche superiori (3^a, 5^a, 7^a etc...).

Riflettere su come ciò sia possibile.


Notate che l'ampiezza della 1° armonica (ricavata dal simulatore) è minore di quella prevista nella pagina precedente per un circuito perfettamente lineare.

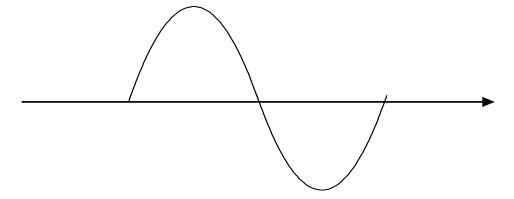
Per capirlo, ricordatevi che quando fate il cubo producete anche una prima armonica, che in questo caso va a sottrarsi (vedi CAP.7). L'espressione qui accanto è corretta, mettetene i valori.

$$\left[+ \tfrac{1}{2} (v_1 - v_2) \cdot \sqrt{2 \cdot k \cdot I_{RIF}} \; - \; \tfrac{k \sqrt{2k} (v_1 - v_2)^3}{8 \sqrt{I_{RIF}}} \cdot \tfrac{3}{4} \right] \cdot R_L$$

Total Harmonic Distortion

Per apprezzare il valore della distorsione dello stadio differenziale, facciamo innanzitutto un calcolo carta-e-penna della distorsione che potremmo avere nel caso peggiore possibile, cioè se il Sorce non si muovesse (v_s=0V su segnale).

Stimiamo ora la distorsione fornitaci dai calcoli teorici e guardiamo cosa ci dice il simulatore, compilando la tabella seguente:

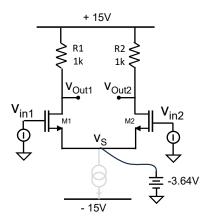

	Da calcoli teorici	Da SPICE : Riportate il valore di THD fornito dal simulatore
THD:	$HD_3 \cong \frac{\varepsilon}{4} = \left(\frac{v_1 - v_2}{2 \cdot V_{OD}}\right)^2 \cdot \frac{1}{2} \cdot \frac{1}{4} =$	

Notate che la distorsione è piccola, molto minore di quella che avremmo se $v_S=0V$. Ciò è molto bello ma perchè?

MOVIMENTO DEL SOURCE

Per capire meglio le ragioni di questo comportamento, rilevare lo spostamento della **tensione nel punto V**s (il source dei due MOSFET) nel caso di V_{diff}=(Vin₁-Vin₂)=2V.

Disegnare l'andamento nel tempo di $V_s(t)$ rispetto al valore di polarizzazione e confrontarlo con la sinusoide $V_{\rm inl}(t)$ già tracciata. Indicare il valore dell'ampiezza di $V_s(t)$.


Commentare il corrispondente andamento di $V_{GS}(t)$ e metterlo in relazione con la linearità complessiva del circuito.

Distorsione con USCITA DIFFERENZIALE (Vout1-Vout2)

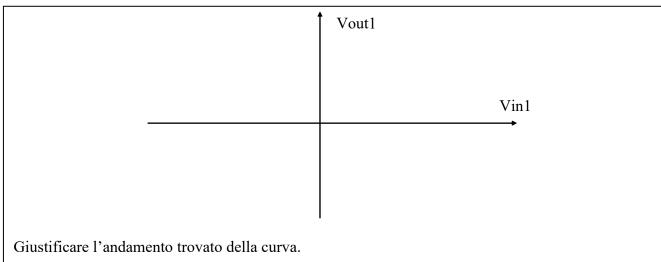
Ci chiediamo se il segnale preso differenzialmente in uscita (V_{out1} - V_{out2}) presenti una distorsione diversa da quella trovata guardando una singola uscita V_{out2} . A tal fine, farsi calcolare da SPICE la distorsione differenziale abilitando in *Transient / Fourier Analysis* la simulazione di (V_{out1} - V_{out2}).

	Da SPICE : Singola uscita V _{Out2}	Da SPICE : Uscita differenziale (Vout1-Vout2)
THD di stadio differenziale		

Per confronto (e divertimento) andiamo a vedere quale sarebbe la distorsione differenziale di due semplici Source a massa appaiati! A tal fine collegate il Source del nostro differenziale (punto Vs dello schema) ad un generatore ideale di tensione al valore di polarizzazione V_S =-3.64V. Su segnale quindi questo punto verrà bloccato. Fate calcolare la distorsione del segnale differenziale delle due uscite (V_{out1} - V_{out2}).

	Da SPICE : Singola uscita V _{Out2}	Da SPICE Uscita differenziale (Vout1-Vout2)
THD di due stadi Source a massa accoppiati		

Vi aspettavate questi risultati?


Parte 4: Comportamento su grandi segnali di ingresso (LAMBDA=0)

Dinamica massima con segnale di ingresso differenziale

Calcolare la massima tensione differenziale di ingresso tale da <u>sbilanciare completamente</u> la coppia differenziale, cioè fare portare tutta la corrente ad un transistore e zero all'altro.		
Spazio per i conti		
$V_{ m diff} _{ m max}$		

Caratteristica ingresso-uscita per grandi segnali

Per controllare con il simulatore la dinamica trovata sopra, si tracci la caratteristica ingresso-uscita dello stadio differenziale, ossia si faccia il grafico di Voutl (oppure Vout2) in funzione dell'ampiezza dell'ingresso. E' utile a questo scopo utilizzare la simulazione "DC sweep" e impostare come variabile di sweep il nome di uno dei generatori di tensione (ad esempio V_{in1}) e farne variare la tensione DC tra -15V e +15V (Start value=-15, End Value=15, Increment=15m). L'altro generatore di ingresso (V_{in2}) verrà tenuto dal simulatore fermo a 0V.

Determinare i regimi di funzionamento dei transistori nei vari punti della curva. Notare che pur entrando in zona Ohmica, il transistore continua a portare tutta la corrente del generatore di coda!

Parte 5: Effetto della resistenza di Early dei MOSFET

Si renda ora il modello dei MOSFET più realistico introducendo l'effetto dello spostamento del punto di pinch-off. A questo scopo si aggiorni il modello di tutti i transistori per tenere conto di una tensione di Early di Va=50V:

.model Mbreakn NMOS(VTO = 0.75KP = 120e-6**LAMBDA=0.02**)

Il simulatore ora utilizza la seguente espressione della corrente di drain in zona satura:

$$I_D = \frac{1}{2} KP \frac{W}{L} (V_{GS} - V_{TO})^2 (1 + \lambda V_{DS})$$

Stimare teoricamente le modifiche subite dal circuito prodotte dalla presenza del termine LAMBDA e verificare tramite il simulatore la bontà delle stime utilizzate.

Polarizzazione:	
Stimare la corrente di drain di M3 (conti a mano). Per fare il calcolo	Valore di corrente di
abbastanza velocemente riflettere su quale sia tra M3 e M4 il transistore	drain di M3 fornita dal
principalmente responsabile del diverso valore della corrente di	simulatore:
polarizzazione rispetto al caso di LAMBDA=0.	

Quale è il nuovo valore di transconduttanza g _{m1} e g _{m2} ? (conti a mano)	Transconduttanza dal simulatore :
	Confrontarlo con quello con LAMBDA=0 :
	COII LAWIBDA-0.
Stimare il valore di r ₀ di M1=M2.	Dal simulatore :
Stillare it valore at 10 at 1411 1412.	But simulatore.
Guadagno lineare: applicare (v ₁ -v ₂)=2mV (V _{in1} =1mV, V _{in2} =1mV sfasa	to di 180°). :
	Valori forniti dal

A fronte dei cambiamenti appena introdotti, stimare il guadagno $V_{out2}/(V_{in1}-V_{in2})$ per <u>piccoli segnali</u> single-ended:	simulatore:
	$V_{out2}/V_{diff} =$
	$(V_{out1}-V_{out2})/V_{diff} =$
Stima del guadagno differenziale (V _{out1} -V _{out2})/(V _{in1} -V _{in2}):	(Vouri Vouri) Vuin
Come mai il guadagno è maggiore di quello senza V _A ?	

$Distorsione: applicare \ v_{diff}\!\!=\!\!2V \ all'ingresso$

Ti aspetti che la presenza di r ₀ (sia in M1, M2 che in M3) aumenti o diminuisca la distorsione dello stadio ?	Risultato da simulazione (V _{diff} =2V e LAMBDA=0.02)
	THD =
Notare che risorge la 2° armonica. Come mai? Chi ne è responsabile, M1, M2 o M3 ?	Confrontalo con THD per LAMBDA=0 :
L'oscillazione della tensione al Source è maggiore o minore di prima senza r ₀ ? Perché ?	

Questa parte è molto difficile. Se l'hai capita sei molto bravo e puoi andare fiero del tuo sapere!